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Abstract. We present a knowledge augmentation strategy for assessing
the diagnostic groups and gait impairment from monocular gait videos.
Based on a large-scale pre-trained Vision Language Model (VLM), our
model learns and improves visual, textual, and numerical representa-
tions of patient gait videos, through a collective learning across three
distinct modalities: gait videos, class-specific descriptions, and numer-
ical gait parameters. Our specific contributions are two-fold: First, we
adopt a knowledge-aware prompt tuning strategy to utilize the class-
specific medical description in guiding the text prompt learning. Sec-
ond, we integrate the paired gait parameters in the form of numerical
texts to enhance the numeracy of the textual representation. Results
demonstrate that our model not only significantly outperforms state-
of-the-art methods in video-based classification tasks but also adeptly
decodes the learned class-specific text features into natural language
descriptions using the vocabulary of quantitative gait parameters. The
code and the model will be made available at our project page: https:
//lisqzqng.github.io/GaitAnalysisVLM/.

Keywords: Pathological gait classification · MDS-UPDRS Gait score ·
Knowledge-augmented prompt tuning · Numeracy for language model

1 Introduction

While quantitative gait impairment analysis has proven to be an established
method for accessing neurodegenerative diseases and gauging their severity [17,19,15,21],
current clinical assessments are used in highly restricted contexts, posing signif-
icant challenges: Not only do they often require specialized equipment, such
as force plates or IMU sensors, but they also struggle to capture moments with
prominent symptoms during clinical visits, which are somewhat special occasions
for patients. Analysing motor symptoms from video offers new possibilities, en-
abling cost-effective monitoring, remote surveillance without the need of frequent
in-person clinic visits, thereby facilitating timely and personalized assessment.

https://lisqzqng.github.io/GaitAnalysisVLM/
https://lisqzqng.github.io/GaitAnalysisVLM/
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Naturally, there have been recent efforts to develop a single 2D-RGB-camera-
based gait analysis system, with the majority leveraging advancements in deep
learning. Albuquerque et al [2] develop a spatiotemporal deep learning approach
by producing a gait representation that combines image features extracted by
Convolutional Neural Networks (CNNs), chained with a temporal encoding based
on a LSTM (Long Short Term Memory) network. Sabo et al [24] have shown
that Spatiotemporal-Graph Convolution Network models operating on 3D joint
trajectories outperform earlier models. In the work by Lu et al [14], 3D body
mesh and pose are extracted and tracked from video frames, and the sequence
of 3D poses is classified based on MDS-UPDRS gait scores [6] using a temporal
CNN. Wang et al [25] have developed a dedicated 3D skeleton reconstructor tai-
lored for gait motion, incorporating a gait parameter estimator from videos and
a multihead attention Transformer for similar classification tasks. Among meth-
ods for non-pathological gait analysis, GaitBase [4] combines improved spatial
feature extraction and temporal gait modeling for appearance-based gait recog-
nition, in both indoor and outdoor settings.

Existing works face challenges in handling insufficient pathological gait data
and imbalances with normal data, promoting strategies such as a self-supervised
pretraining stage prior to the task-specific supervision [24], or the employment
of crafted loss functions [14]. Nevertheless, the need for data-efficient approaches
with superior performance is crucial in video-based pathological gait classifica-
tion. Meanwhile, the recent emergence of large-scale pre-trained vision-language
models (VLMs) has demonstrated remarkable performance and transferability
to different types of visual recognition tasks [23,20], thanks to their generalizable
visual and textual representations of natural concepts. In the context of medi-
cal image analysis, VLMs tailored to various medical imaging tasks via finetun-
ing [9], multimodal global and local representation learning [8], knowledge-based
prompt learning [22,10], knowledge-based contrastive learning on decoupled im-
age and text modality [27], and large-scale noisy video-text pretraining [29].

Inspired by these works, we propose a new approach to transfer and im-
prove representations of VLMs for the pathological gait classification task in
neurodegenerative diseases. Concretely, we model the prompt’s context with
learnable vectors, which is initialized with domain-specific knowledge. Addition-
ally, numerical gait parameters paired with videos are encoded and aligned with
the text representation with a contrastive learning. During training, the model
learns visual and text representations capable of understanding both the class-
discriminating and numerical features of gait videos. To our knowledge, our work
represents the first attempt to deploy VLM for the analysis of pathological gait
videos.

2 Method

An overview of our method is shown in Fig.1. We utilize three distinct modalities
to enhance the accuracy and the reliability of the VLM in classifying medical
concepts: gait videos, class-specific medical descriptions and numerical gait pa-
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rameters. Our knowledge augmentation strategy consists of two parts: First, we
adopt a knowledge-aware prompt learning strategy to exploit class-specific de-
scription in the text prompts generation, while leveraging the pre-aligned video-
text latent space (Sec.2.2). Second, we incorporate the associated numerical gait
parameters as numerical texts to enhance the numeracy within the latent space
of the text (Sec.2.3). Once the training is complete, we run a classifier solely on
the video features extracted from the input video.

2.1 Dataset and preprocessing

Dataset. Our study leverages a dataset comprising 90 gait videos from 40 pa-
tients diagnosed with neurodegenerative disorders and 3 healthy controls. More-
over, 28 gait video clips featuring healthy elderly individuals have been added,
chosen from the TOAW archive [18] based on specific criteria (Berg Balance
Scale ≥ 45, 0-falls during last 6 months, etc.), bringing the total number to 118
clips. All the videos are recorded at 30 fps, each capturing a one-way walking
path of an individual. The patients were instructed to walk forth and back on a
GAITRite (https://www.gaitrite.com/) pressure-sensitive walkway, provid-
ing a set of gait parameters as outlined in Table 1 in Supplementary Material.

Fig. 1: Overview of our cross-modality model for video-based clinical gait analy-
sis (left), alongside clinical gait notions and per-class descriptions of gait classes
utilized for prompt initialization (right). Three colored blocks represent the text-
and video encoding pipelines, and the text embedding of numerical gait param-
eters, respectively.

https://www.gaitrite.com/
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Preprocessing. We crop the original videos based on bounding boxes, and em-
ploy a sliding window scheme (window size: 70 frames) to generate subsequences,
with a stride of 25 for training and 0 for validation. This process results in ap-
proximately 900 clips of 70 frames for each cross-validation fold. To effectively
incorporate the gait parameters into text space, we formulate sentences by com-
bining four gait parameters with “and”, connecting names and values with “is”,
as illustrated in Fig.2. The choice of four parameters per sentence is based on
our observation that, in practice, neurologists often label a video by using only a
few prominent or representative visual clues rather than exhaustively listing all
evidences. Out of the total 29 parameters available, we select 438 combinations,
each containing 4 parameters whose Pearson correlation coefficients are within
the range of [−0.4, 0.4].

Fig. 2: Translation of gait parameters into text.

2.2 VLM fine-tuning with visual and knowledge-aware prompts

We adopt the prompt learning strategy, keeping the pre-trained VLM frozen
to preserve its general representation and leverage the pre-aligned multi-modal
latent space. Taking inspiration from KAPT [10], we introduce gait-specific
knowledge-based prompts by feeding per-class descriptionsDesci (See our project
page) into the text prompts. These clinical gait notions have been generated us-
ing ChatGPT-4 [1], then subsequently filtered, modified, and validated by a
neurologist. To devise learnable prompts, we use KEPLER [26], similar to [10],
on the class descriptions, which are then projected through per-class multi-layer
perceptrons (MLPs), and added to the learnable parameters {Xk

i } to form learn-
able prompts {Ck

i }:

{Ck
i }i=1,...,Ncls

= Projkϕ(KEPLER({Desci})) + {Xk
i }, k = 1, ..., 8 (1)

where Ncls is the number of class, Ck
i ∈ R512 and Xk

i ∈ R512 represent the k-th
learnable prompts and parameters associated to the i-th class, respectively. For
the automatic prompt {Di}, we extract keywords from {Desci}, as illustrated
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in Fig.1. More examples can be found on the project page. These selected texts
then undergo standard tokenization of the frozen CLIP text encoder FCLIPT

to obtain {Di}. Similarly, we pass the class names {Ti} into the tokenizer of
FCLIPT to generate the class token tokclsi . As shown in Fig.1, we concatenate
{Ci}, {Di} and {tokclsi } into FCLIPT to obtain the text features {FT

i }:

{FT
i } = FCLIPT ([{Ci}, {Di}, {tokclsi }]). (2)

On the video side, each frame of the input video V goes through the tokenization
of the Vision transformer (ViT) [3] and forms a sequence of per-frame represen-

tations z
(0)
t . The visual prompts for the l-th layer of the pretrained CLIP Vision

Encoder FCLIPV are derived by applying Vita-CLIP [28]’s video prompt learner

(V itaV PL) to the output of the previous layer {z(l−1)
t }:

[S(l), G(l), L(l)]l=1,...,12 = VitaVPLθ({z(l−1)
t }), (3)

where S(l), G(l), and L(l) respectively denote the learnable summary, global,
and local prompt tokens at layer l. As suggested in [28], these prompt tokens

are appended to {z(l−1)
t } and subsequently fed into FCLIPV to obtain FV :

FV = FCLIPV ([{z(l−1)
t }, S(l), G(l), L(l)]). (4)

Moreover, to combat class imbalance, we employ a multi-class focal loss [14] to
maximize the cosine similarity of positive pairs:

Lk =

Ncls∑
i=1

−α(1− pi)
γyilog(pi), pi =

exp(< FT
i |FV > /τ)∑Ncls

j=1 exp(< FT
j |FV > /τ)

, (5)

where y denotes the one-hot encoded label, < ·|· > the cosine similarity, and
τ = 0.01 temperature parameter. We set the weighting factor α = 0.25 and the
focusing parameter γ = 2.

2.3 Contrastive learning with numerical text embeddings

Text embedding of numerical gait parameters. Starting from the set of
sentences each containing four gait parameters, we employ a two-step embed-
ding process as illustrated in Fig.3. Initially, sentences without numerical values
are fed into the CLIP text encoder, resulting in a descriptive embedding of the
textual content {FT

gp}. As illustrated in Fig.3, we treat separately the logical
conjunction “is” to generate text embedding [IS]. Subsequently, number embed-
dings are generated by multiplying the dedicated embedding base [NUM] with
the associated numerical values {ωgp}. The chosen specialized embedding base
is designed to be orthogonal to the position encoding [7], ensuring the efficient
transmission of numerical information through the self-attention blocks of the
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Fig. 3: Numerical text embedding process using the frozen CLIP text encoder.

Transformer. The numerical text embedding Fnum is then obtained by applying
the FCLIPT to the concatenated sentence:

Fnum = FCLIPT ({[FT
gp, [IS], ωgp · [NUM]]}), gp ∈ {1, 2, 3, 4}. (6)

Fig.1 in Supplementary Material demonstrates the cosine similarities of Fnum

embedded from the text: “the walking speed is [value]”, where [value] ranges from
0 to 200, employing different methods to represent the numerical values. Our nu-
merical embedding scheme, in contrast to adopting position encoding or directly
encode digit and numerical text with FCLIPT , produces continuous embeddings
that best reflect the numerical domain. Given that most gait parameter values
are positive, we designate the mean value among healthy controls as the zero

reference: Vnorm = α · (V−V healthy)
σ , where σ is the variance of the gait parameter

values, and α is the scaling factor to adjust the data range to [-2.5, 2.5], the
dynamic range of layer normalization within the self-attention block. The nu-
merical text embeddings for the dementia grouping task are visualized in Fig.4.

Cross-modal contrastive learning. Since each set of gait parameters is as-
signed a class label in our training data, we encode these gait parameters into
numerical text embeddings using the embedding method described earlier, and
introduce classification tasks thereon.

As illustrated in Fig.1, the projection of the generated text features FT
i and

that of numerical embedding Fnum are trained in a way that the cosine similarity
between Pnum and the projected text feature of its ground-truth class PT is
maximized, by using a cross-entropy objective Lgp. The global loss function
becomes: L = Lk + ω · Lgp. We set ω = 0.05 through heuristic analysis. To
demonstrate alignment of numerical embeddings with the multi-modal space,
we visualize the embedding spaces before and after learning in Fig.4.
Interpreting the per-class text embedding. We aim at the effective trans-
lation of per-class text features {FT

i } into natural language expressions using the
vocabulary of numerical gait parameters. To this end, we trained a text decoder
from scratch to transform numerical text embeddings Fnum back into their cor-
responding gait parameters, reverting the embedding scheme shown in Fig.3. An
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(a) Original text embeddings. (b) Embeddings projected by MLPs.

Fig. 4: Feature visualization using UMAP (no. components=3) for numerical text
embeddings derived from gait parameters. Yellow points in (b) represent the pro-
jections of the learned per-class text features. Images rendered with Polyscope.

4-layer transformer decoder DT is employed for text decoding. In line with recent
developments in text-only decoder pre-training [13], we train DT using the prefix
language modeling. Specifically, given a sentence composed of gait parameters
s = {word1,word2, ...,wordL}, we generate a sequence of token IDs using the
dictionary of FCLIPT . For the numbers, we scale the numbers, which had been
previously normalized to [-2.5, 2.5], to a graduated integer scale of [0,Nnum].
The token ID tok of a number [num] is defined as: tok = [EOS]+ scale([num]),
where [EOS] = 49407. DT learns to reconstruct the sequence of token IDs {tokj}
starting from the numerical text embedding Fnum. In addition to the vanilla
cross-entropy loss [13], we leverage an ordinal cross-entropy loss to further pe-
nalize the reconstruction error of the number values:

Lnum = − | ˆtok − tok|
[EOS] +Nnum − 1

[EOS]+Nnum∑
m=1

ymlog(pm), (7)

where Nnum = 200, | ˆtok − tok| represents the absolute distance between the

ground-truth token ID tok and the estimation ˆtok, y denotes the one-hot encoded
ground-truth label, and p the estimated probability.

Benefiting from the proposed cross-modal contrastive learning scheme, {FT
i }

can be represented as a linear combination of the numerical text embeddings
Fnum, with weights computed by measuring the cosine similarity between {Pi}
and Pnum. Subsequently, we apply DT on {F̂num

i } to generate natural language

descriptions: { ˆDesci} = DT ({F̂num
i }).

3 Experiments and Results

Our study includes two classification tests: Gait scoring to estimate the sever-
ity of a patient’s condition based on a 4-class gait scoring (normal–0, slight–1,
mild–2, and moderate–3) following MDS-UPDRS III [6], and dementia subtyping

www.polyscope.run
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to distinguish between different dementia groups: normal/DLB(Dementia with
Lewy Bodies)/AD(Alzheimer’s Disease). See the project page for detailed clini-
cal gait descriptions on each class. Due to its limited size (a total of 120 videos),
we divide our video dataset into training and validation sets and conduct 10-fold
cross-validation for each classification task.

Table 1: Comparative analysis on two classification tasks: Gait score (‘Gait scor-
ing’) and dementia subtyping (‘Dem. group’). Model performance is evaluated
using top-1 accuracy (‘acc’,%) and F1-score (‘Fscore’,%).

(a) Different model configurations
Model
configurations

Gait scoring Dem. group

Acc. Fscore Acc. Fscore
Baseline 64.78 60.75 86.27 79.24
Baseline+KAPT 65.98 61.97 87.29 78.48
Baseline+NTE 64.44 57.64 88.26 81.34
Ours 67.76 62.59 90.08 83.86

(b) SOTA methods
State-of-the-art
models

Gait scoring Dem. group

Acc. Fscore Acc. Fscore
OF-DDNet[14] 54.73 48.59 68.92 65.38
ST-GCN [24] 49.08 43.87 61.46 56.99
KShapeNet[5] 53.69 44.85 65.27 54.86
GaitBase[4] 43.48 30.25 53.42 41.76

3.1 Ablation studies

We conduct ablation experiments on four model configurations, with different
combinations of knowledge augmented prompt tuning (KAPT) and numerical
text embedding (NTE). As shown in Table 1(a), the combination of both KAPT
and NTE yield the best performance, whereas NTE alone or KAPT alone can
sometimes slightly worsen the performance. In general, the models tend to per-
form better for dementia group task, which can be attributed to the more dis-
tinctive per-class descriptions and more objective ground truth labeling in that
classification.

3.2 Comparison with state-of-the-art

We compare our model with several related state-of-the-art (SOTA) models.
Three of these models ([14,24,25]) are specifically designed for the classification
of Parkinsonism severity on 3D skeletons, whereas GaitBase [4] is for the gait
recognition and silhouette-based. As shown in Table 1, our method achieves the
best overall results in both tasks. This is somewhat expected, as other models are
not designed for, and do not adapt well to, the constraints of limited data size.
Differing from other models where the performance is averaged across 10 folds,
result of GaitBase[4] represents the best across 5 folds. Note that the chosen
SOTA methods operate on 3D reconstructed poses or extracted 2D silhouettes,
for which we used VIBE[11], MAX-GRNet[25] or PARE[12]. Changing among
these algorithms did not result in meaningful differences in performance. The
results in Table 1(b) represent the best among these combinations.
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3.3 Decoding the per-class description

We apply the pretrained text decoder DT on the per-class text features {Fi}
obtained through the cross-modal contrastive learning in Sec.2.3. Examples of
the decoded texts are shown in Fig.2 of Supplementary Material and in the ac-
companying video. For the gait scoring task, descriptions of slight impairment
bear a closer similarity to normal than to mild or moderate impairments, con-
forming to the severity levels. Most notably, descriptions on moderate manifest
significant abnormalities, including marked deviation of the foot angle from the
progression line. Additionally, we observe that certain criteria in the clinical gait
notions have been mapped to some quantitative gait parameters, such as the
slowness in mild impairment. For the dementia subtype task, the decoded sen-
tences for the DLB clearly show that the model has learned the distinctive gait
characteristics. This aligns with findings in [16], where the motor symptom in
the DLB group is greater compared to the AD group. The decoded texts for the
AD group, on the other hand, are less distinctive and are rather close to the
healthy group. This may be attributed to the limited availability, with only 6
healthy elderly videos having corresponding gait parameters during training.

4 Conclusion

We presented a knowledge augmentation strategy to enhance the adaptability
of a large-scale pre-trained Vision-Language Model for video-based gait anal-
ysis in neurodegenerative diseases. Our method makes use of class-specific de-
scriptive text and numerical gait parameters associated with patient videos, via
prompt learning and numeracy-enhanced text representation, respectively. On
two video-based gait classifications tasks, our model significantly outperformed
other strong SOTAmethods, given only slightly more than 100 videos. We believe
that our work demonstrates how to efficiently enhance representation learning
and offers a novel alternative to incorporating patient metadata, particularly in
tabular form.
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