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Abstract. Survival prediction in pathology is a dynamic research field
focused on identifying predictive biomarkers to enhance cancer survival
models, providing valuable guidance for clinicians in treatment deci-
sions. Graph-based methods, especially Graph Neural Networks (GNNs)
leveraging rich interactions among different biological entities, have re-
cently successfully predicted survival. However, the inherent heterogene-
ity among the entities within tissue slides significantly challenges the
learning of GNNs. GNNs, operating with the homophily assumption, dif-
fuse the intricate interactions among heterogeneous tissue entities in a
tissue microenvironment. Further, the convoluted downstream task rel-
evant information is not effectively exploited by graph-based methods
when working with large slide-graphs. We propose a novel prior-guided,
edge-attributed tissue-graph construction to address these challenges,
followed by an ensemble of expert graph-attention survival models. Our
method exploits diverse prognostic factors within numerous targeted tis-
sue subgraphs of heterogeneous large slide-graphs. Our method achieves
state-of-the-art results on four cancer types, improving overall survival
prediction by 4.33% compared to the competing methods. Our code is
publically available on https://github.com/Vishwesh4/DGNN

Keywords: Survival Prediction · Graph Representation Learning · Dig-
ital Pathology · Segmentation Prior

1 Introduction

Machine learning in computational pathology is advancing survival prediction
by analyzing patient data and extracting biomarkers from whole slide images
(WSIs) [20, 21, 27], and thereby offering crucial guidance to clinicians by esti-
mating survival likelihood. Traditionally, survival prediction methods relied on
handcrafted features and the Cox proportional hazards model [3, 8]. However,
recent advancements, such as Multiple Instance Learning (MIL) and graph-
based approaches, have gained traction. MIL [11, 20, 21] treats WSIs as bags
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of patches, encodes the patches via pre-trained feature extractors, and aggre-
gates patch features using pooling operations, e.g., attention pooling [10, 11],
Nystromformer [20,26], and cluster-based pooling [27]. Conversely, graph-based
methods [6,13,25] directly operate on WSIs by leveraging both local and global
morphological and topological relationships within WSIs. By constructing WSI-
graphs, e.g., patch-graph [6,14,29,30] and hierarchical graph [25], these methods
apply graph convolutions and various pooling strategies to derive slide-level rep-
resentations. Graph-based methods are gaining traction for capturing contextual
and hierarchical information with noted prognostic significance [6, 12].

However, the predictive performance of graph-based methods is hindered
by two major challenges. First, relevant prognostic factors are often obscured
within large WSI-graphs, making them cumbersome to identify [31]. For exam-
ple, pathologists focus on spatial distributions of tumors and tumor-infiltrating
lymphocytes (TILs) in the stroma, while disregarding lymphocytic activities
outside tumor beds for risk analysis [19]. Emphasizing such factors among nu-
merous interactions is difficult when working with large WSI-graphs. Second,
the learnability of graph-based methods is impacted by the misalignment be-
tween the homophilic assumption of graph convolutions and the heterogeneous
composition of tissue environments. The former dictates connectivity among
semantically similar entities [9]. In contrast, the latter includes the spatial orga-
nization of diverse entities, e.g., the coexistence of epithelial cells and TILs in
ductal carcinoma in situ. Applying graph convolutions to these heterogeneous
spatial graphs leads to erroneous message passing among dissimilar entities and
smoothens local entity attributes, degrading the global slide-representation.

In this paper, we address the aforementioned challenges by proposing a novel
prior-guided tissue-graph construction and an ensemble of expert graph-models.
Firstly, we employ a tissue classification and a segmentation model to hierar-
chically categorize the tissue types into tumor, tumor-associated stroma, and
other classes. Then, we construct edge-attributed directed WSI-graphs using
subsets of tissue types. This tissue-graph model serves two main purposes: (1)
to deconvolve a complete-graph into focused sub-graphs, enhancing informative
prognostic factors, and (2) to differentiate between similar and dissimilar nodes
in a heterophilic neighborhood, and thereby improve local node-level represen-
tation learning. Secondly, we train individual expert graph models for each set
of sub-graphs, specializing in survival prediction for targeted subsets of tissues.
A simple linear aggregation of these experts is used for the final prediction.
The process is analogous to real-world clinical practice, where distinct prognos-
tic markers are individually estimated and afterward put together for collective
evaluation. We empirically demonstrate that the individual expert models can
potentially render comparable or better predictive performance than a model
trained with complete-graphs. Furthermore, our framework allows better ex-
ploration of model-attended prognostic factors. The prior-guided tissue graphs
provide a nuanced understanding of the biological relevance of the attended prog-
nostic factors, making them more interpretable. Moreover, our method offers a
flexible framework for incorporating additional pathologically relevant biomark-
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Fig. 1: (a) Irrelevant patches (gray) are removed, and relevant patches undergo
TIL and tissue segmentation (tumor (red), tumor-associated stroma (blue), and
others (green)). Edge-attributed directed graphs with node (red) and edge (yel-
low) features are constructed for tissue subsets. Density-based GNNs expert
models are trained for each subgraph and they are ensemble for final prediction.

ers and testing their prognostic significance. We validate our approach on four
cancer types from TCGA (BRCA, COAD&READ, STAD, and UCEC) [23],
demonstrating consistent improvements in survival prediction over other base-
lines across all cancer types and achieving a gain of 4.33% on overall C-index.

2 Methods

In this section, we first discuss tissue-prior extraction from WSIs and propose
our approach for constructing prior-guided edge-attributed directed subgraphs.
Then, we introduce the individual expert Density-based Graph Neural Networks
(D-GNNs) and conclude by defining ED-GNN, an ensemble of multiple expert
D-GNNs. The overview of our method is illustrated in Fig. 1.

Segmentation prior: Inspired by the pathological process of tumor risk assess-
ment, we adopt a two-staged coarse-to-fine-grained analytical approach. First,
a ResNet18 binary classifier is trained on the WSIBulk dataset, a subset of
the TIGER [1] dataset, which identifies patches within tumor bulk, e.g., tumor,
stroma, necrosis, and inflammations, from fat tissues and blood vessels, etc. Sub-
sequently, tumor bulk patches undergo fine-grained simultaneous tissue and TIL
segmentation using a bi-headed MAUnet [5] with a ResNet34 encoder, achiev-
ing pixel-wise segmentation at 0.5µm/pixel. The first head segments three tissue
types: tumor, tumor-associated stroma (TAS), and others, while the second head
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segments TILs vs. no-TILs. Trained on the WSIROI dataset from the TIGER
dataset, this architecture enables simultaneous tissue and TIL segmentation for
faster processing. Model architecture is illustrated in the supplementary.

WSI Graph Construction: We overcome the challenge of convoluted hetero-
geneous WSI-graph by decomposing a WSI into tissue subsets s ∈ S, where S is
the superset of tissue subsets and constructing edge-attributed directed graphs
Gs ∀s, resulting in a set of graphs G = {G1, ..Gs.., G|S|}. Given N tissue types,
we can build |S| = 2N−1 subgraphs with different tissue combinations. However,
we select only pathologically relevant tissue subsets based on literature studies,
i.e., tumor-stroma, tumor-other, stroma-other, tumor-stroma-other, as in Fig. 1.
Next, we extract patches of size 224× 224 with uniform stride at 1.0µm/pixel.
We compute the densities of tissue types per patch by utilizing the segmentation
prior. Tissue subsets are created by selecting patches with ≥ 25% tissue den-
sities. Thresholding is decided over argmax to ensure sufficient per tissue-type
representation while avoiding instances lacking certain tissue-types in WSIs.

We construct Gs = (Xs,As,Es) at patient-level with n nodes and m edges,
where As ∈ Rn×n is an unsymmetric adjacency matrix, and Xs ∈ Rn×dn ,
Es ∈ Rm×dm denote node and edge features, respectively. Similar to [6], As is
built using k-NN(k=8) with a distance threshold resulting in a directed graph.
Node features xs

i ∈ Xs is produced by passing patch i through a pre-trained
pathology-specific feature extractor, CTranspath [24] that provides dn = 768.
We further concatenate Random Walk Positional Embeddings (RWPEs) [7, 18]
to Xs to support transformer-based pooling in subsequent GNN. A RWPE is
generated by taking random walks of different lengths and calculating the prob-
ability of landing back at the starting nodes. We use RWPE of size 24 based
on [7] to ensure node-level spatial distinguishability, making dn = 792. For edge
features esij ∈ Es, a density vector for node i, ds

i ∈ R4 is generated using
the segmentation prior. ds

i represents the densities of tumor, TAS, other, and
TILs within patch i. The edge features eij between nodes i and j is defined
as esij = [ds

i ||ds
j ], where || denotes concatenation, making dm = 8. Recognizing

the significance of relationships between different entities [17], we posit that the
proposed approach reinforces the GNN to consider various tissue relation types
during message-passing and aggregation, effectively addressing the heterophilic
tumor microenvironment.

Density based GNN (D-GNN): We propose to train D-GNNs that are in-
dividual expert models Ms for each subset s, resulting a set of models M =
{M1, ..Ms, ..,M |S|}.Ms consists of L layers of Graph Attention Networks (GATv2)
[4]. The message aggregation and update functions of a GATv2 layer are shown
in equations 1 and 2. GATv2 learns the weight parameters as,Θs

u, Θ
s
v, and Θs

e

to output αs
ij (Eq. 2), the attention of i to j within neighborhood N (i). The

anisotropic aggregation (Eq. 1) incorporates both neighbor’s morphology xs
j , and

more importantly, the type of tissue relations and TIL densities esij defined from
prior knowledge. This facilitates improved contextualized representation learn-
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ing in a heterophillic tumor microenvironment. Further, the operation within a
subset s enables more focused learning to utilize informative signals. Following, L
layers of GNN, global WSI-level representations are produced by reading out the
local contextualized node representations via self-attention-based pooling. This
step exploits the long-distance interactions among tissue microenvironments to
derive informative WSI representation. To this end, we use Nystromformer [26],
due to its efficient computation of self-attention over long sequences, followed
by mean-pooling. Finally, we use an MLP to generate the final hazard vector
ps ∈ Rt, where the continuous patient survival time was divided into t time
intervals [6]. Here, each logit ps[j] denotes the probability of a patient dying
within the time interval tj and tj+1.

x
s(l+1)
i = αs

i,iΘ
s
ux
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Ensemble of D-GNNs: Training independent Ms on Gs allows to specialize
in specific tissue entities and interactions that denote different prognostic fac-
tors. We propose Ψ , an Ensemble of D-GNNs (ED-GNNs), which integrates the
expertise of {Ms}, i.e., P = [p1||..||ps||..||p|S|] ∈ R|S|×t, and predicts the hazard
vector using p = Ψ(P ). Specifically, we define Ψ(P ) = WTP , where W ∈ R|S| is
a hyperparameter. Ensembling also helps in robustifying the survival prediction
that builds on the synergies and complementarities of multiple predictors.

3 Experiments

Datasets: We assessed the efficacy of our method across four datasets from
TCGA, namely Breast Invasive Carcinoma (BRCA, n=943, 129 events), Colon
and Rectum Adenocarcinoma (COAD&READ, n=566, 118 events), Stomach
Adenocarcinoma (STAD, n=332, 135 events), and Uterine Corpus Endometrial
Carcinoma (UCEC, n=478, 75 events), encompassing a total of 2,319 patients,
2,655 slides, and 475 adverse events. We adopted the same 5-fold cross-validation
splits as [6] for BRCA and UCEC. For STAD and COAD&READ, we stratified
the dataset into 5-folds based on adverse events. The mean and standard devia-
tion of the concordance index (C-index) across the 5-validation splits is used to
benchmark the model performances.

For segmentation, we used the TIGER dataset [1] that includes breast cancer
tissues consisting of WSIBulk (coarse tumor bulk annotation) and WSIROI (tis-
sue and TILs annotations) sourced from multiple centers. To note, we transferred
the segmentation prior extraction models trained on breast cancer to other can-
cer types without fine-tuning, due to the absence of tissue and TIL annotations.



6 V. Ramanathan et al.

Methods BRCA COAD&READ STAD UCEC Overall

Attention MIL [11] 0.610 ± 0.053 0.571 ± 0.081 0.535 ± 0.065 0.629± 0.066 0.586
Patch-GCN [6] 0.611 ± 0.072 0.596 ± 0.066 0.538 ± 0.057 0.604 ± 0.129 0.587
TransMIL [20] 0.659± 0.071 0.533 ± 0.083 0.519 ± 0.061 0.660± 0.095 0.593

GTN [30] 0.651 ± 0.074 0.583 ± 0.032 0.542 ± 0.029 0.630 ± 0.052 0.601
HvTSurv [21] 0.636 ± 0.048 0.558 ± 0.046 0.558 ± 0.072 0.629 ± 0.094 0.595

Deep Attention MISL [27] 0.584 ± 0.045 0.528 ± 0.038 0.513 ± 0.075 0.618 ± 0.071 0.561

Tumor-Stroma D-GNN (Ours) 0.634 ± 0.076 0.560 ± 0.036 0.569 ± 0.060 0.630 ± 0.094 0.598
Tumor-Other D-GNN (Ours) 0.665 ± 0.071 0.558 ± 0.069 0.558 ± 0.051 0.655± 0.103 0.609
Stroma-Other D-GNN (Ours) 0.649 ± 0.038 0.600 ± 0.070 0.555 ± 0.093 0.675 ± 0.085 0.620

Complete-graph D-GNN (Ours) 0.669 ± 0.054 0.610± 0.047 0.551 ± 0.075 0.655 ± 0.074 0.621
ED-GNN (Ours) 0.672 ± 0.059 0.611 ± 0.040 0.562 ± 0.066 0.664± 0.076 0.627

Ablation studies for Complete-graph D-GNN

Complete-graph D-GNN 0.669 ± 0.054 0.610± 0.047 0.551 ± 0.075 0.655 ± 0.074 0.621
✗ edge features 0.657 ± 0.055 0.565 ± 0.086 0.565 ± 0.059 0.668 ± 0.116 0.614

✗ edge features, coarse filtration 0.632 ± 0.037 0.572 ± 0.055 0.563 ± 0.050 0.666 ± 0.096 0.608
✗ edge features, coarse filtration, RWPE 0.629 ± 0.084 0.561 ± 0.051 0.543 ± 0.028 0.668± 0.105 0.600

Table 1: Survival prediction C-Index scores across 4 cancer types. Best model in
green, second best in blue. Top baseline in yellow. Best ablation models in bold.

Implementation details: We used PyTorch Geometric (v2.3.1) and PyTorch
(v1.13.0) for all our experiments. Negative log-likelihood survival loss [28] was
optimized with identical hyperparameters as in [6], namely, Adam optimizer
with 2 × 10−4 learning rate, 20 epochs, 1 × 10−5 weight decay, and batch size
of 1 with 32 steps for gradient accumulations. For D-GNNs, we used L = 2. In
ED-GNN, for subsets tumor-stroma, tumor-other, stroma-other, and complete-
graph, we used weighted mean, with equal weightage to tissue sub-graphs and
more weightage to the complete-graph. Same hyperparameter values were used
for all cancer types and models from the last epochs were selected for evaluation.

4 Results and Discussions

Segmentation Prior: On the private TIGER testing dataset, our prior segmen-
tation model achieved a dice score of 0.6927 for tumor and 0.7498 for TAS, com-
pared to the challenge organizer’s algorithm [2], that obtained 0.7152 for tumor
and 0.6900 for TAS. For TIL identification, our model achieved a FROC score
of 0.3203, compared to 0.2367 for the challenge organizer’s algorithm. We qual-
itatively assessed segmentations on non-breast cancer datasets, demonstrating
satisfactory results and enabling cross-application of the breast cancer dataset-
trained prior, to other cancer types.

Quantitative analysis of D-GNNs & ED-GNN: We first assessed complete-
graph D-GNN. Table 1 shows that D-GNN outperforms competing methods
by 3.32% in overall metric while resulting in the best performance for BRCA
and COAD&READ, and comparable for STAD and UCEC. Among graph-based
methods, GTN and PatchGCN, D-GNN consistently showed improvement indi-
cating its effectiveness in handling heterophilic tumor microenvironments. Abla-
tion results in Table 1 affirm the effectiveness of our graph construction choices in
terms of improved performance for BRCA, COAD&READ, and STAD over the
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vanilla graph. Ablation studies showed that individual components impact dif-
ferently across cancer types. While edge information was crucial for BRCA and
COAD&READ; coarse filtration was important for BRCA, STAD and UCEC;
and RWPE for all cancers except UCEC. These can be attributed to the vari-
ability in relevant prognostic factors across cancer types; for instance, UCEC
prognosis relies more on tumor sizes and depth of tumor invasion than indi-
vidual interactions [6], thus less dependent on edge information. Nevertheless,
incorporating all components positively contributed to the overall performance.

In Table 1, we observe that, across all cancer datasets, ED-GNN outperforms
competitors and complete-graph D-GNN by 4.33% and 1.13% in overall metric,
respectively. Notably, stroma-other D-GNN results are comparable or better
than complete-graph D-GNN, potentially reasoned to the subset graph focusing
on prognostically relevant tumor-stroma boundaries [17]. In STAD and UCEC,
experts focusing on different tissue subsets obtain the best model predictions,
suggesting complementarity of prognostic factors across subsets. This indicates
the utility of individual expert models that learn from relatively sparser tissue
sub-graphs. It further reinforces our motivation to deconvolve complete graphs,
enabling models to specialize in subset-specific prognostic factors and, through
ensemble learning, eventually improving overall performance. While our current
strategy involves independent expert modeling, they can be learned together in
an end-to-end manner. Notably, our framework can aid in identifying biomarkers
among exploratory markers by exploiting co-learning and knowledge discovery.

Qualitative analysis setup: To understand D-GNN’s prognostic factors, we
analyzed model-attended regions in segmentation-informed tissue graphs. We
particularly analyzed the complete-graph to explore the prognostic factors across
all the sets of segmented tissues and their interactions. We examined highly at-
tended regions with attention weights ≥ 95th percentile in TCGA-BRCA, cat-
egorizing nodes based on the tissue type with the highest density. TAS tissues
were further subdivided into high-TILs and low-TILs using a predefined thresh-
old derived from the 90th percentile of TIL densities across all patches in the
dataset. Based on model predictions, we stratified patients into high- and low-
risk groups selecting 150 most/least risky patients based on model predictions.
We tallied edges between various node types to investigate trends in edge con-
nections within highly attended regions. A comparison was made with random
graphs [16] having the same node types and degree distribution to mitigate bias
in edge counts. For each patient and edge type, we checked if the graph had
more or fewer edges than the average of edge connections among 50 randomly
generated graphs. We assigned a value of 1 if it had more edges and 0 if it had
fewer. The results of both analyses are presented as an average count across all
patients in the respective groups.

Qualitative analysis: Fig. 2(a) reveals higher TILs in the low-risk group and
more tumor nodes in the high-risk groups, consistent with high immune activity
leads to better prognosis [19]. Fig. 2(b) shows a higher frequency of connections
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Fig. 2: (a) Proportion of tissue types and (b) tissue connection types (compared
to random subgraphs), that complete-graph D-GNN paid high attention across
high and low-risk groups. (c) Significant up/down-regulations of Gene Ontology
(GO) terms across the groups. Orange bars show up-regulation of GO terms in
low-risk groups compared to high-risk groups and vice versa for blue bars. For
brevity, top 3 most up/down regulated GO terms were selected. (d) Attention
maps of expert D-GNNs for different tissue subgraphs.

between similar entities than cross-entities, as similar entities often form cohesive
tissue clusters, resulting in increased connections. Notably, connections between
high TILs and tumor nodes were higher in low-risk compared to high-risk groups,
suggesting the network emphasizes regions of interaction between high TILs and
tumors, validating the importance of tumor-TIL interactions [19]. Additionally,
Other and high TIL connections were higher than low-risk cases. As ‘Other’ in-
cludes diverse tissues, including high-risk elements like necrosis, further analysis
is needed to determine the tissue type with such characteristics.

We wanted to further explore the differences between the two risk groups from
the genomics context. We performed gene set enrichment analysis (GSEA) [22]
on the high and low-risk groups, using patient’s gene expressions [15], to iden-
tify significantly up or downregulated GO terms. Interestingly, GO terms signif-
icantly upregulated in the low-risk group primarily related to immune response
Fig. 2(c). Additional GO terms are presented in the supplementary material.
Moreover, we observe that our model captures significantly more immune-related
GO terms than competing models, such as GTN (see supplementary), which also
matches Fig. 2(a) and Fig. 2(b), where increased attention in low-risk groups is
directed towards high TIL regions and tumor-high TIL connections.

In Fig. 2(d), attention maps for various tissue subset graphs are displayed.
D-GNNs in addition to centering attention on the tumor, exhibit distinct focus
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within different subset graphs, providing diverse prognostic factors. This allows
ED-GNN to integrate diverse perspectives for enhancing survival prediction.

5 Conclusion

In summary, this paper presents an innovative approach to tackle the challenges
in survival prediction arising from the heterogeneity of WSIs. By integrating
segmentation priors, our method guides tissue graph construction and ensem-
bled graph-model development. Our ensembled model achieves state-of-the-art
performance by improving 4.33% overall C-Index over four cancer types, demon-
strating our method’s effectiveness in analyzing complex tumor microenviron-
ments in WSIs. However, our method requires training individual expert models,
which can be limiting when applied to large datasets. We aim to explore end-
to-end expert aggregation pipelines for ED-GNN in the future. Future work will
also involve more studies on the generalizability of the segmentation model to
other cancer types and the effects of erroneous segmentation on survival pre-
diction. We also plan to investigate modeling more prognostic markers across
cancer types, which can be seamlessly integrated into our flexible framework.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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