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Abstract. Tremendous efforts have been made to investigate stereo-
typical patterns of tau aggregates in Alzheimer’s disease (AD), current
positron emission tomography (PET) technology lacks the capability to
quantify the dynamic spreading flows of tau propagation in disease pro-
gression, despite the fact that AD is characterized by the propagation of
tau aggregates throughout the brain in a prion-like manner. We address
this challenge by formulating the seek for latent cortical tau propaga-
tion pathways into a well-studied physics model of the optimal mass
transport (OMT) problem, where the dynamic behavior of tau spread-
ing across longitudinal tau-PET scans is constrained by the geometry of
the brain cortex. In this context, we present a variational framework for
dynamical system of tau propagation in the brain, where the spreading
flow field is essentially a Wasserstein geodesic between two density dis-
tributions of spatial tau accumulation. Meanwhile, our variational frame-
work provides a flexible approach to model the possible increase of tau
aggregates and alleviate the issue of vanishing flows by introducing a
total variation (TV) regularization on flow field. Following the spirit of
physics-informed deep model, we derive the governing equation of the
new TV-based unbalanced OMT model and customize an explainable
generative adversarial network to (1) parameterize the population-level
OMT using generator and (2) predict tau spreading flow for the unseen
subject by the trained discriminator. We have evaluated the accuracy of
our proposed model using the ADNI and OASIS datasets, focusing on its
ability to herald future tau accumulation. Since our deep model follows
the second law of thermodynamics, we further investigate the propaga-
tion mechanism of tau aggregates as AD advances. Compared to existing
methodologies, our physics-informed approach delivers superior accuracy
and interpretability, showcasing promising potential for uncovering novel
neurobiological mechanisms.

† These authors contributed equally to this work.
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1 Introduction

Tau, a protein associated with microtubules, serves as a critical regulator of
microtubule stability and forms the primary constituent of neurofibrillary tan-
gles, which are a principal neuropathological hallmark of Alzheimer’s disease
(AD) [9]. Following the seminal postmortem study in [3], tau pathology is often
observed to initiate in the rostral medial temporal lobe, particularly in the en-
torhinal cortex at Braak stage I/II. Subsequently, it advances to limbic regions
at Braak stage III/IV, encompassing the hippocampus. Ultimately, tau pathol-
ogy extends to the neocortex at Braak stage V/VI, invariably correlating with
cognitive symptoms [12], the propagation of tau is shown in Fig. 1 (left).
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Fig. 1: Left:
Propagation of
tau pathology
in AD. Right:
Longitudi-
nal change of
whole-brain tau
accumulation.

As is well known, the human brain is an intricately interconnected system
formed by white matter fibers [1]. Within this framework, the concept of tau
propagation emerges as a plausible mechanism through which tau pathology may
systematically develop and advance across distinct brain regions [8]. A plethora
of evidence suggests that abnormal tau aggregates do not appear randomly
within the brain. Instead, their dissemination follows distinct spatial patterns,
constrained by the cortical geometry [16, 21] and the intricate large-scale brain
networks [11, 14, 15]. In this context, several graph diffusion models have been
proposed to capture the temporal dynamics of tau propagation. For instance,
the network diffusion model [14,22] has been employed to forecast the future ac-
cumulation of pathological burdens, with spreading pathways delineated by the
network topology. Current research on tau biomarkers predominantly focuses on
the association between local accumulation of tau aggregates and disease severity.
For example, cross-sectional examinations of tau pathology reveal a stereotypical
pattern that varies between cognitive normal (CN), early-stage mild cognitive
decline (EMCI), late-stage MCI (LMCI), and AD. However, subject-specific evo-
lution of tau aggregates manifests inconsistent changes (indicated by lines within
the same subject in Fig. 1 (right)) as the disease progresses, which poses a sig-
nificant challenge to correlating longitudinal change with disease progression.
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Prevailing computational models often simplify system linear dynamics as
linear [15, 18], which may lead to inconsistent findings on tau propagation. For
instance, commonly used techniques involve utilizing eigenvectors of the graph
Laplacian matrix (derived from the brain network’s adjacency matrix) as basis
functions to model longitudinal changes in pathological burdens across brain re-
gions. By assuming that future changes will adhere to the same dynamics, these
methods project tau accumulations via extrapolation in the temporal domain.
Nevertheless, these approaches predominantly capture focal changes at individ-
ual nodes, thus lacking the capacity to fully elucidate the mechanism driving tau
propagation over time. Another critical limitation in current methods is focusing
on only a few regions (i.e., the region-to-region spreading via bundles of white
matter fibers) rather than voxel-based alterations, such as brain cortex.

Even though we can accurately predict the longitudinal changes of focal
patterns at each node, multiple flow-spreading scenarios can lead to equivalent
time-varying regional measurements. In contrast, understanding the emerging
flow-spreading mechanism facilitates straightforward explanation and prediction
of focal pattern trends. Therefore, uncovering the region-to-region (or vertex-to-
vertex) flow map underlying tau propagation is valuable. Solving this reverse
problem could discover new insights into the etiology of AD in neuroscience.
Drawing an analogy to a public transportation system, we conceptualize that the
macro-environment propagation of tau aggregates throughout the brain entails a
primary mode of neural transportation, i.e., the prion-like cell-to-cell spreading
along the brain cortex. By constraining tau spreading flows atop the brain cor-
tex, we translate the tau-specific transport equation (similar to the optimal mass
transport problem, OMT) into an equivalent graph neural network (GNN). This
approach, executed in a layer-by-layer manner, enables effective characterization
of tau spreading flows from a multitude of longitudinal tau-PET scans [7]. The
network topology is constructed based on the spatial distances between vertices
on the brain surface. Therefore, our proposed method represents an explainable
deep model, with physics principles providing the system-level underpinning of
tau spreading flows, while the mathematical insight and the power of deep learn-
ing ensure application value, such as prediction accuracy.

We have applied our proposed method to longitudinal neuroimaging data
from the ADNI and OASIS datasets, enabling us to evaluate the prediction
accuracy of future tau accumulation and explore the propagation mechanism of
tau aggregates as the disease progresses. In addition, we investigate the trending
of cortical thickness (CT) reduction on the cortex, where CT is regarded as an
outcome proxy of pathological process.

2 Method

Consider the brain cortex is a collection of vertices G = (ν, ε), where the set
of vertices (ν = 1, ..., N) forms the brain surface, and each vertex represents a
node in the graph. The relationships between these vertices are captured using
an adjacency matrix D = [dij ]

N
i,j , the construction method of graph topology is
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illustrated in Fig. 2 (c), i.e., dij =
√

(ai − aj)2 + (bi − bj)2 + (ci − cj)2, where
dij represents the Euclidean spatial distance between interconnected nodes i
and j, and variables a, b, c denote the coordinates of vertex. For nodes without
repeated edges or self-loops, related edges are set as 0. Each node νi is associated
with feature embeddings xi, which are the nodal measurements of tau SUVR
(standard uptake value ratio) or cortical thickness. As explained next, we seek
to forecast changes in biomarkers (such as tau or cortical thickness (CT)) in the
brain by uncovering the latent vertex-to-vertex flow field between current and
next time points.

2.1 GNNs with a Link-Selective Information Exchange Mechanism

GNNs [20] has emerged as a powerful framework for learning representations of
graph-structured data. In GNNs, nodes in a graph are associated with feature
vectors, and the relationships between nodes are encoded in the graph structure.
GNNs optimize by iteratively aggregating feature xi from neighboring nodes νi,
allowing them to capture complex patterns and dependencies within the graph.
During backpropagation, each node receives gradients as ∇Gx = dij(xi − xj)
at each layer of the GNN. Essentially, GNN captures the relationships between
feature nodes by following a graph heat kernel process where the regulariza-
tion can be formulated as Lheat =

∫
G |∇Gx|2dx. In an analogy to the isotropic

Gaussian smoothing, this l2-regularized optimization approach tends to overly
smooth the final results. To mitigate this issue, the total variation (TV) reg-
ularization [6] is applied to the graph smoothness term. The TV-based graph
regularization is then formulated as follows: LTV =

∫
G |∇Gx|dx, which allows

us to selectively exchange nodal information via following a global heuristics
such as network community (i.e., applying graph heat kernel diffusion within
the community while maintaining the community-to-community distinction).

2.2 Variational Framework of OMT Model for Tau Propagation

Problem formulation. We consider the tau accumulation at the baseline t and
follow-up t+1 as the probability distribution ρt and ρt+1 (by normalizing x across
brain cortex). For a given probability function ρ and a vector field v ∈ RN×N ,
q = ρv ∈ RN×N is the flux field on G. In this context of OMT, we seek to find a
vector field v, which has the lowest cost to transport the mass of tau aggregate
from ρt to ρt+1. If the transport cost between two brain regions is measured
using l2-norm distance, the specific infimum is called the Wasserstein-2 distance
(W2). Benamou and Brenier theory [2], pointed out that Wasserstein-2 distance
can be written in an equivalent computational fluid dynamic formulation which
boils down to the Fokker-Plank (FP) equation [13].

W2

(
ρt, ρt+1

)
= inf

v

∫ t+1

t

ρ∥v∥2dt

subject to:
dρ

dt
+ div(ρv) = 0, ρ(t) = ρt, ρ(t+ 1) = ρt+1

(1)
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where ρ is time-interpolant between ρt and ρt+1 over time interval [t → t+1] and
div denotes the divergence operator. Inspired by [7], we conceptualize the tau
spreading dynamics as a conservative system of transporting the mass of tau ag-
gregates where the spreading flow is optimized towards the minimal cost in terms
of geodesic distances on brain cortex. Moreover, formulating tau propagation us-
ing OMT allows us to develop explainable deep models with great mathematical
insight. To that end, we will use deep learning techniques to parameterize the
transport maps that can be applied to incoming unseen subjects.

OMT equation for cortical Tau propagation. Upon the introduction
in Sec. 2.1, we first replace W2 with Wasserstein-1 distance W1

(
ρt, ρt+1

)
=

inf
v

∫ t+1

t
ρ|v|dt, to prevent flow vanishing issue. The motivation of usingW1 OMT

is that (1) OMT with linear ground distance is usually more robust to outlier
and noise than a quadratic cost, and (2) TV-based deep models are more effec-
tive at maintaining the data geometry compared to those based on l2-norm [6].
Similar to the gravity field driving water flow, the intuition of OMT is that the
evolution of latent potential function u (we assume there is a non-linear mapping
ϕ from tau SUVR x to u, i.e., u = ϕ(x) steers the propagation of tau aggregates
throughout the brain cortex. Further, we constrain the gradient of the potential
function ∇Gu to follow the graph topology (∇Gu)ij = dij(ui − uj). Following
the recent work [5,7], we assume the energy flux q is regulated by the potential
gradient field ∇Gu, i.e., q = α⊗∇Gu, where α = [αij ]

N
i,j=1 is a learnable matrix

characterizing the link-wise contribution of each potential gradient (∇Gu)ij to
the flux qij and ⊗ denotes Hadamard production. Therefore, the physical con-
cept of flow defined as q = ρv is equivalent to the machine learning counterpart
q = α⊗∇Gu. This prompts a reformulation of the Wasserstein-1 distance as

W1

(
ρt, ρt+1

)
= inf

v

∫ t+1

t

ρ|v|dt (2)

Since W1 is not differentiable at u = 0, we introduce a dual matrix variable
f ∈ RN×N to approximate |∇Gu| with f · (∇Gu) by expecting |f | → 1, which
boils down to the minimization of W1 to dual min-max functional

JTV (u, f) = min
u

max
f

∫ 1

0

α⊗ (f · (∇Gu)) dt (3)

After that, we use Gâteaux variations to optimize JTV via the following two

coupled time-dependent PDEs:

 max
f

df
dt = α⊗∇Gu

min
u

du
dt = −α⊗ div(f)

. Since α is a latent

variable and tau potential energy u is given, the maximization of f opts towards
maximizing the tau spreading flow via α, under the condition that the spreading
flow f satisfies ui(t+ 1) = ui(t) +

∑N
j=1 fij at each brain vertex. Given the tau

flow f , we can update the tau potential function u by solving the FP equation.
Second, we extend the above FP equation to an unbalanced OMT scenario where
we allow the volume change of tau aggregates over time. In this regard, we
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Fig. 2: (a) The network architecture of the generator (G) and discriminator (D).
(b) the feature extractor (FE). (c) The construction of graph topology on the
brain surface. (d) The framework of our proposed new GAN model with TV-
based Lagrangian mechanics.

modify the FP equation to du
dt + α ⊗ div(f) = φ(s), where s denotes the mass

difference and φ is the reaction function. Thus, the change of potential u at
each brain region is due to not only flux q in the graph neighborhood but also
the production of new tau aggregates. Combining with PDE, we select GAN
network architecture to implement the min-max optimization schema is that we
sought to design an end-to-end deep model that allows us to include the learning
component for capturing the reaction process (mapping from the observed tau
concentration to the latent state) in brain cortex.

A GAN model of tau spreading flow with TV-based Lagrangian
mechanics. By incorporating unbalanced OMT into tau prediction, we can
better model the complex dynamics of tau propagation in the brain, taking into
account the varying amounts of tau present in different cortex regions. This ap-
proach enhances the accuracy and robustness of our predictions, leading to more
precise insights into neurodegenerative diseases and other neurological condi-
tions associated with tau pathology. To optimize Eq. 3, we integrate unbalanced
OMT to design a generative adversarial network (GAN) network model with
TV-based Lagrangian mechanics to predict the spreading flow f . The overall
network architecture is shown in Fig. 2 (d), mainly consisting of a generator (G)
and discriminator (D) module (Fig. 2 (a)). To enable the network to acquire flow
information, we reform the graph convolution (marked as Gconv*) operation as

Gconv∗(xi) =
∑N

j=1 dij · (W ·xi), Gconv∗(x) denotes the resulting feature vector
after the Gconv* operation, N is the number of nodes, xi represents the feature
vector of the i-th vertex, W denotes the weight matrix for the linear transforma-
tion, W (dij) represents the weighting function based on the distance dij . This
formula describes how the new Gconv* operation weights and sums the input
features based on the distances between nodes, which are applied to GAN.
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Specifically, xt is fed into the feature extractor (FE) (Fig. 2 (b)) to yield latent
potential function ut, where FE is defined as: F = RELU(Gconv∗(Gconv∗(X))),
H = F+RELU(Gconv∗(F )), Y = DNN(H), where DNN(·) is composed of linear
layers (ϕ(·)) and Leaky Relu activation functions, Y is the output of the final
step of the features extractor. The proposed Gconv* component can optimize ut

through the unbalanced FP equation. ut interacts with information from each
interconnected node to generate ut+1. Then fed into the generator and it can
produce x̂t+1, which serves as input to the discriminator. The discriminator’s
process involves xt+1 passing through the feature extractor to generate energy
density ut+1. Information interaction is performed on ut, which is then fed into
the discriminator for decoding, yielding the final output x̃t+1. The generator (G)
(Fig. 2 (a)) is divided into a feature flow prediction module (FFP, green dashed
box) and a feature prediction module (FP, red dashed box). The feature flow
prediction module consists of two layers, with one layer dedicated to learning to
update u through the equation ui(t+1) = ui(t)+

∑N
j fij . After the feature flow

prediction module, ut+1 can be obtained. In the feature decoding module, the
decoding task is mainly performed by linear layer (ϕ(·)) and Gconv* block (short
for LGB)) and DNN is crucial for decoding ut+1 back to the predicted future data
x̂t+1. Note, since the working mechanism of this adversarial model underlines the
min-max optimization in the energy transport equation, the nature of predicted
spreading flows is carved by the characteristics of max-flow. The driving force
of our network is to minimize (1) the mean square error (MSE) between the
generator output x̂t+1 and observed tau SUVR xt+1 and (2) the distance between
the synthesized x̃t+1 (from discriminator) and the generator output x̂t+1.

3 Experiments

3.1 Data Description and Experimental Setting

We evaluate our model on ADNI [19] and OASIS [10] datasets. First, we selected
163 subjects from the ADNI dataset, each containing 2-5 time-series data points,
therefore the amount of data has increased by 1.6 times. Especially, we use
the standard MNI Space to register all the PET images and use the Gaussian
function for denoising. Each individual had tau surface and cortical thickness
data for both the left and right brain. All tau and cortical thickness data is
presented by vertices of brain. The number of vertices is N = 163842 (decimating
in Freesurfer can be used to reduce complexity). The involved cohorts are divided
into four groups based on the diagnostic labels of each scan, including the CN
group, EMCI group, LMCI group, and AD group. The data split strategy is
6:2:2 (training: validation: testing). To validate the generalization of our model,
we select the OASIS dataset for predicting cortical thickness. OASIS dataset
consists of 1172 subjects and the type of disease contains AD and CN.

The comparison method contains the prevail graph-based methods including
vanilla GCN [20], GAT [17] and a current graph-based SOTA method GCNII [4]
on predicting disease progression (i.e., future tau accumulation) on the ADNI
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and OASIS datasets. The learning rate and epochs as (Generator: lr=0.001, Dis-
criminator: lr=0.006 and Epoch: 30). The evaluation metrics for testing results
including (1) mean absolute error (MAE) for predicting tau burden levels and
(2) MAE for identifying predicted cortical thickness.

3.2 Results on Predicting Tau and Cortical Thickness

We perform a comprehensive series of experiments on both the ANDI and OASIS
datasets to predict future tau burden based on baseline tau levels and cortical
thickness. Table 1 (top) demonstrates the superior performance of our approach
on forecasting further tau accumulation. To support the generalization of our
model, we further assess its performance in predicting cortical thickness (bot-
tom), a proxy measure that indirectly reflects disease progression. Our method
also achieves considerable results. For OASIS dataset, our proposed method
outperforms GCN, GCNII and GAT with MAE of 0.3621 compared to 0.3879,
0.8401 and 1.3457, respectively. As depicted in Fig. 3 (left), we examine the
patterns of tau aggregate spread within both CN and AD groups. Notably, the
highlighted regions in red denote significant areas characterized by heightened
tau propagation. Particularly striking is the pronounced tau spreading observed
in the temporal lobe during the advanced stages of AD, contrasted with the
relatively subdued transport flow in CN subjects. In our visualization, color
gradients represent varying levels of tau accumulation on the cortex, while the
length of arrows corresponds to the volume of tau propagation flux. Fig. 3 (right)
shows the reduction trend of CT (outcome proxy) on the cortex.

Model CN AD LMCI EMCI Mean

Tau

Ours 0.2403 0.1318 0.2389 0.1865 0.2208
GCN 0.3951 0.1612 0.3286 0.2220 0.3277
GCNII 0.6611 0.4631 0.6106 0.4729 0.6008
GAT 1.2210 0.9633 1.1280 0.8761 1.1220

CT

Ours 0.3107 0.3157 0.3143 0.3274 0.3145
GCN 0.3682 0.3619 0.3652 0.3721 0.3646
GCNII 0.4637 0.4284 0.4493 0.4552 0.4429
GAT 0.5960 0.5607 0.5693 0.5689 0.5716

Table 1: Per-
formance com-
parison (Tau
and Cortical
Thickness) with
different graph
models on
ANDI dataset.

4 Conclusion

In this work, we embarked on a variational framework for dynamical system
of tau propagation in the brain, which is formulated as an OMT problem and
customizes an explainable generative adversarial network. Experimental results
show that our physics-informed method outperforms other GNN models, not
only in predicting tau aggregation but also in cortical thickness, thereby en-
hancing our understanding of the pathophysiological mechanisms. However, our
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Fig. 3: Left: Cortical tau flows by OMT. We show the vertex-based cortical flows
for one CN (top) and one AD (bottom) subject between two tau distributions
on the brain cortex. Right: The decreasing trend of cortical thickness.

method has the limitation that predicting the tau and cortical thickness in speci-
cal time points.In future work, we may involve exploring innovative graph regu-
larization techniques and conducting further precise predition based on specific
time points of graph-based learning tasks.
Disclosure of Interests. The authors have no competing interests to declare.
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