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Abstract. Emphysema is defined as an abnormal alveolar wall destruc-
tion exhibits varied extent and distribution within the lung, leading to
heterogeneous spatial emphysema distribution. The progression of em-
physema leads to decreased gas exchange, resulting in clinical worsen-
ing, and has been associated with higher mortality. Despite the ability
to diagnose emphysema on CT scans there are no methods to predict
its evolution. Our study aims to propose and validate a novel prognostic
lobe-based transformer (LobTe) model capable of capturing the complex-
ity and spatial variability of emphysema progression. This model predicts
the evolution of emphysema based on %LAA-950 measurements, thereby
enhancing our understanding of Chronic Obstructive Pulmonary Disease
(COPD). LobTe is specifically tailored to address the spatial heterogene-
ity in lung destruction via a transformer encoder using lobe embedding
fingerprints to maintain global attention according to lobes’ positions.
We trained and tested our model using data from 4,612 smokers, both
with and without COPD, across all GOLD stages, who had complete
baseline and 5-year follow-up data. Our findings from 1,830 COPDGene
participants used for testing demonstrate the model’s effectiveness in
predicting lung density evolution based on %LAA-950, achieving a Root
Mean Squared Error (RMSE) of 2.957%, a correlation coefficient (ρ) of
0.643 and a coefficient of determination (R2) of 0.36. The model’s ca-
pability to predict changes in lung density over five years from baseline
CT scans highlights its potential in the early identification of patients
at risk of emphysema progression. Our results suggest that image em-
beddings derived from baseline CT scans effectively forecast emphysema
progression by quantifying lung tissue loss.

Keywords: Emphysema Progression · COPD · Transformers · ViT ·
Deep Learning.

1 Introduction

Emphysema, characterized by the abnormal destruction of alveolar walls, ex-
hibits varied extents and distributions within the lung, leading to a heteroge-
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neous spatial distribution of the condition [9,2,15]. This progression results in
diminished gas exchange, clinical deterioration, and is associated with increased
mortality. Affecting over two million people in the US, this destructive lung tissue
process is a fundamental pathobiological aspect of chronic obstructive pulmonary
disease (COPD), a leading cause of death worldwide [16,1]. While often linked
to chronic tobacco smoke exposure, emphysema is also increasingly identified
in non-smokers without clear risk factors. Furthermore, numerous studies have
highlighted that individuals with emphysema face a heightened risk of death,
even when considering broader population samples [10,6,8,14].

CT scans can objectify the evolution of lung density through the percentage
of low-attenuation area below -950 Hounsfield Units (%LAA-950), providing a
quantifiable measure of COPD and emphysema changes [7]. Despite the capacity
to diagnose emphysema using simple threshold-based techniques [3] or advanced
machine learning strategies, methods to predict its progression remain undevel-
oped. Our objective is to introduce a new transformer-based methodology capa-
ble of articulating the complexity of emphysema progression by forecasting lung
density changes according to %LAA-950, thus enhancing our comprehension of
COPD.

Convolutional Neural Networks (CNNs) and self-attention mechanisms [5,12]
have significantly advanced COPD research through their ability to derive com-
plex data-driven representations. For instance, a vanilla Vision Transformer
(ViT) [5] was utilized to classify emphysema subtypes in CT images [18], while a
ViT methodology identified COPD subjects by FEV1/FVC < 0.7 [13]. Moreover,
a multimodal approach employing a cross-modal transformer was suggested to
distinguish COPD stages according to the Global Initiative for Obstructive Lung
Disease (GOLD) [19]. Building on our prior research on COPD [4], this study
introduces and validates a novel prognostic transformer-based model, LobTe, for
identifying COPD subjects at risk of emphysema progression by predicting the
change in %LAA-950 over five years.

This work introduces three innovative aspects: (I) training includes learning
the evolution of local emphysema progression and lung density without utiliz-
ing follow-up chest CT scans for inference; (II) a lobe embedding fingerprint is
proposed to encapsulate the local disease evolution into five distinct prognos-
tic lobe signatures; and (III) the introduction and validation of LobTe, a new
prognostic transformer-based model designed to regress the evolution of emphy-
sema based on %LAA-950 measurements (∆%LAA-950). Our approach employs
a transformer encoder on the lobe fingerprints to leverage a global self-attention
mechanism to provide a prediction based on lobar tissue destruction.

2 Materials and Methods

A total of 4,612 smokers without and with COPD (across all severity stages)
and with complete data at baseline and 5-year, including CT scans and accurate
lobe segmentations, were selected from the COPDGene (Genetic epidemiology of



Lobar Transformer encoder (LobTe) to predict EP in COPD 3

COPD) study [11]. This cohort was divided into training (n=2,782) and testing
(n=1,830) groups to evaluate the proposed method.

Local Emphysema Progression (LEP) Definition and Ground Truth
Generation: The method proposed was designed to locally learn the evolution
of the lung density and local emphysema progression (LEP) according to the
percentage of low-attenuation area (%LAA-950). We defined LEP as those pixels
that change from lung tissue at baseline CT scan to air at 5-years follow-up after
co-registration of the CT scans, i.e. the pixel density decays from a value of >
-950 HU at baseline to a value of ≤ -950 HU at 5-year follow-up co-registered
CT scan. Figure 1 illustrates the LEP definition, with a region showing pixels
transitioning from lung tissue (a) to air (b) highlighted in red, and a region
without LEP in blue.

Baseline 5-year follow-up 
co-register CT scan

Fig. 1. Graphical definition of local emphysema progression, showcasing two 32 by 32
pixel regions over the CT scans to demonstrate areas with (red) and without (blue)
LEP.

Methods

The method described in this section consists of three main components: (1) a
local density model (Fig. 2 (a)) used to encode the local evolution of the lung
density and emphysema progression at 5-year; (2) a lobe embedding strategy
(Fig. 2(b-2)) used to summarize the local lung density embedding into five fin-
gerprints corresponding to each lobe (left/right superior lobes, left/right inferior
lobes and and right middle lobe); and (3) a transformer-based model, lobe Trans-
former (LobTe) (Fig. 2(b-3), designed to predict subject-specific changes in lung
density at 5-year based on ∆%LAA-950.

Local Density Model:The local density model introduced in [4] incorporates a
local attention mechanism via Convolutional Block Attention Modules [17]. This
model, comprising a longitudinal encoder-decoder and a multilayer perceptron
(MLP), is trained to both reconstruct a specific 32 by 32 pixel neighborhood at
5-year follow-up and predict the likelihood of emphysema progression. Initially,
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Fig. 2. (a) Local density model used to encode the local evolution of lung density
and emphysema progression. (b-c) Proposed workflow to regress lung density change
(∆%LAA-950) using LSTM and Transformer.

the encoder-decoder is pre-trained separately for stability, followed by a com-
bined training phase with the MLP under a conditional strategy that balances
local reconstruction accuracy and emphysema progression encoding following
this steps: (1) the MLP is fitted to regress the likelihood of the LEP using the
encoded local patterns at 5-year; (2) the encoder is adjusted to maximize the
likelihood of the LEP. In this stage the MLP model is frozen, no weight adjust-
ments are made; and (3) the encoder-decoder is re-trained to keep a suitable
local reconstruction.

Lobe Embedding Fingerprint: The local model encoder is applied on N lo-
cal patches for each lobe extracted with stride of 4-pixels over the lobe region
to derive N × 300 embeddings that are aggregated into a fingerprint using the
deciles of the embedding distribution resulting in a representation of 300 by 11
embedding percentiles (0%, 10%, . . . 100%) per lung lobe as it can be seen in
Fig.2 (b-2).

Lobe Transformer (LobTe) Model: A new lobe-based transformer (LobTe)
model is proposed to regress the evolution of emphysema at 5-year according to
∆%LAA-950. The LobTe model employs a pure transformer encoder, substitut-
ing traditional ViT image patches with lobe embedding fingerprints to maintain
global attention according to lobes’ positions (see Fig. 2 (b-3)). This adaptation
reduces the model size to under 141,700 parameters, addressing the challenge of
ViT models’ reliance on large datasets [5]. The transformer encoder features an 8
multi-head self-attention block layer, a 32-unit MLP with GELU non-linearity,
and a 32-dimension global phenotype embedding representation. Lobe pheno-
types are normalized using z-score standardization (µ = 0.0186 and σ = 2.868).
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Training: The local density model (Fig. 2 (a)) was trained on 6.8 million ran-
dom co-registered patches extracted from the baseline and follow-up CT in 984
COPDGene participants randomly selected from the training set. The LobTe
model (Fig. 2 (b-3)) was fitted with the remaining 2,226 COPDGene partici-
pants reserved for training. 1,670 were used to train the transformer and 556
subjects for internal validation and early stopping. The population reserved for
training, including the validation dataset used for the early stop criteria, was
randomly selected from our cohort to preserve as much as possible the GOLD
distribution observed in the COPDGene cohort. The local density model was
optimized as it was described in [4] while the LobTe model was optimized using
a stochastic gradient descent (Adaptive Moment Estimation) with a learning
schedule defined as follow:

lr =
1√
G

min

(
1√
i
, i

1√
w3

)
,

where G corresponds to the dimension of the global lobe fingerprint (G=32) and
i is the iteration step. The warm-up factor, w, was set to

w =

⌊
Ne

4

⌋⌊
N

bs

⌋
,

with the maximum number of epochs, Ne=1,000, the number of training samples,
N=2,226, and the batch size used, bs=32.

3 Results

A total of 1,830 COPDGene participants with (n=712) and without (n=1,118)
COPD from our cohort were reserved for testing our model. The model demon-
strated good performance in predicting the evolution of %LAA-950, exhibiting
a root mean squared error of RMSE=2.957 and slight bias (-0.24% and -0.06%
for our testing dataset and COPD participants respectively) when compared to
the measured values at 5-years (Fig. 3 Bland-Altman). Additionally, the model
displayed good predictive capabilities for ∆%LAA-950 at 5 years with good
correlation (Pearson’s coefficient ρ=0.64) (Fig. 3 linear fit) and coefficient of
determination of R2 = 0.36. Table 1 presents model performance results strati-
fied by disease stage defined as smokers without COPD (GOLD 0), mild disease
(GOLD 1-2) and severe (GOLD 3-4).

Then, we studied the risk of emphysema progression (EP) according to
distinct progression thresholds defined according to the 65th (∆%LAA-950 >
0.146%), 75th (∆%LAA-950 > 0.282%), 85th (∆%LAA-950 > 0.619%) and 95th
percentiles (∆%LAA-950 > 1.835%) of the 5-year emphysema evolution of no-
smokers controls (n=65). The model’s performance to identify subjects at risk of
EP was analyzed for each group by means of the sensitivity (Sens.), specificity
(Spec.), positive predictive value (PPV), false rates (positive (FPR) and nega-
tive (FNR)), accuracy (ACC), balanced accuracy (BA), F1-score and Cohen’s
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No COPD (GOLD 0) Mild COPD (GOLD 1-2) Severe COPD (GOLD 3-4)
RMSE 1.780 3.615 5.352
ρ 0.665 0.640 0.500
R2 0.320 0.371 0.150

Table 1. Root mean squared error (RMSE), Pearson’s correlation coefficient (ρ) and
coefficient of determination (R2) for predicting the evolution of %LAA-950 stratified
by COPD severity.
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Fig. 3. Scatter plot, including a linear fit and the Pearson’s correlation coefficient, and
Bland-Altman plot between the model’s prediction and ∆%LAA-950 measured at 5-
year for the whole testing cohort (center) and testing subjects with COPD (right)

Kappa coefficient (K). Additionally, the 95% confidence interval was measured
on 1000 bootstrap samples. The performance characteristics were computed for
the whole testing cohort (n=1,830) and those with COPD (n=712).

The model’s performance in detecting individuals at risk of EP, both in the
overall testing cohort and specifically among COPD subjects, is summarized
in Table 2. Across all risk groups, the model achieved good accuracy and F1
scores, particularly in COPD subjects, with mean values of ACC= 74.75%, Bal-
anced ACC=73.41%, and F1=76.41%, alongside relatively low false rates (mean
FPR=33.18% and FNR=19.99%). Cohen’s Kappa coefficient indicated moderate
agreement (mean K=47.38%), with the highest agreement observed in subjects
with lung density decrement beyond the 75th percentile (K=50.3 and K=49.6).
In contrast, groups with a density decrement lower than 0.3% (65th, and 75th
percentiles) demonstrated lesser agreement (mean Kappa K=44.8%).

The entire testing population showed similar trends with good accuracy
(mean ACC= 74.88%, Balanced ACC=71.47%), moderate agreement (mean
K=43.33%), and low false rates (mean FPR=21.50% and FNR=35.55%), al-
beit with a reduced F1 score (mean F1=64%). Notably, agreement decreased by
approximately 7.5% (mean K=37.35%) among subject groups with a lung tissue
loss below 0.3%, predominantly comprising non-COPD participants. Subjects
at mild (GOLD 1-2) and severe (GOLD 3-4) stages of COPD exhibited median
(mean) ∆%LAA-950 values of 0.39% (0.87%) and 2.76% (3.4%), respectively.

Finally, we studied the distribution of LobTe predictions and ∆%LAA-950
stratified by disease severity. Statistical differences were found between the changes
of %LAA-950 for these three groups, showing that the LobTe prediction could



Lobar Transformer encoder (LobTe) to predict EP in COPD 7

be a useful tool to predict the evolution of ∆%LAA-950 across disease stages
(Fig. 4). On the contrary, no statistical significant difference were found between
∆%LAA-950 at 5-year and the LobTe prediction with the exception of the con-
trol group (smokers GOLD 0) where a week difference was measured (0.01 <
p-value ≤ 0.05).

No COPD 5y No COPD LobTe Mild 5y Mild LobTe Severe 5y Severe LobTe
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Fig. 4. Distribution of ∆%LAA-950 measured at 5-year an predicted (LobTe) stratified
by disease stage defined as without COPD (GOLD 0), mild disease (GOLD 1-2) and
severe (GOLD 3-4). ns: p-value ≥ 0.05 ; *: 0.01 < p-value ≤ 0.05; **: 0.001 < p-value
≤ 0.01; ***: 0.0001 < p-value ≤ 0.001; ****: p-value ≤ 0.000.

4 Discussion and conclusions

In this study, we have proposed and validated a novel prognostic transformer
model based on local embeddings of the temporal evolution of lung density and
designed to quantify the change in lung density at 5 years as measured by %LAA-
950. This model’s capability to accurately predict changes in lung density from
baseline CT scans highlights its potential utility in the early identification of
COPD patients at risk of emphysema progression.

To our knowledge, no current methodologies in the field of lung diseases,
including COPD, have been able to predict changes in emphysema based on
%LAA-950 or Perc15 (adjusted lung density). This unique aspect of our LobTe
method sets it apart, as comparisons with existing methods are not feasible due
to the novelty of our approach. Our analysis, grounded in data from a longitudi-
nal study, lays a robust foundation for future research aimed at predicting lung
density changes.

Our results indicate that the LobTe method can accurately predict the change
in %LAA-950 over 5 years with a strong correlation and stability across disease
severity and different values of progression. Furthermore, minimal discrepancy
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Population ∆%LAA-950
> 0.146% > 0.282% > 0.619% > 1.835%

COPD

Prev. 60.3 (57.2, 63.2) 58.0 (55.1, 61.1) 51.7 (48.6, 54.8) 39.7 (36.9, 42.6)
Sens. 85.3 (82.7, 88.3) 82.1 (78.9, 85.2) 81.2 (77.9, 84.8) 71.4 (66.7, 76.0)
Spec. 58.3 (53.3, 62.9) 61.5 (57.2, 66.1) 68.9 (64.7, 72.9) 78.6 (75.0, 81.8)
PPV 75.6 (72.4, 78.8) 74.7 (71.4, 78.2) 73.6 (70.0, 77.1) 68.7 (64.4, 73.0)
FPR 41.7 (37.1, 46.7) 38.5 (33.9, 42.8) 31.1 (27.1, 35.3) 21.4 (18.2, 25.0)
FNR 14.7 (11.7, 17.3) 17.9 (14.8, 21.1) 18.8 (15.2, 22.1) 28.6 (24.0, 33.3)

(n=712) ACC 74.6 (71.9, 77.4) 73.5 (70.9, 76.3) 75.3 (72.7, 77.9) 75.7 (72.9, 78.4)
BA 71.8 (69.0, 74.7) 71.8 (69.1, 74.7) 75.1 (72.5, 77.7) 75.0 (72.0, 77.8)
F1 80.2 (77.8, 82.7) 78.2 (75.8, 80.8) 77.3 (74.6, 79.9) 70.0 (66.4, 73.5)
K 45.1 (39.5, 50.9) 44.5 (39.0, 50.3) 50.3 (45.0, 55.6) 49.6 (43.7, 55.1)

All

Prev. 45.0 (43.1, 46.9) 40.9 (39.0, 42.7) 32.8 (31.0, 34.7) 20.8 (19.2, 22.3)
Sens. 69.8 (67.1, 72.3) 66.3 (63.4, 68.8) 63.8 (60.6, 67.0) 57.9 (53.7, 62.3)
Spec. 66.6 (64.2, 69.0) 72.7 (70.5, 74.8) 82.8 (81.0, 84.7) 91.8 (90.7, 92.9)
PPV 63.1 (60.5, 65.6) 62.7 (59.9, 65.5) 64.5 (61.2, 67.9) 65.0 (60.7, 69.3)
FPR 33.4 (31.0, 35.8) 27.3 (25.2, 29.5) 17.2 (15.3, 19.0) 8.2 (7.1, 9.3)
FNR 30.2 (27.7, 32.9) 33.7 (31.2, 36.6) 36.2 (33.0, 39.4) 42.1 (37.7, 46.3)

(n=1,830) ACC 68.0 (66.3, 69.8) 70.1 (68.3, 71.8) 76.6 (74.9, 78.3) 84.8 (83.5, 86.1)
BA 68.2 (66.4, 69.9) 69.5 (67.7, 71.2) 73.3 (71.5, 75.2) 74.9 (72.7, 77.2)
F1 66.2 (64.0, 68.4) 64.4 (62.1, 66.6) 64.1 (61.5, 66.8) 61.3 (57.6, 64.9)
K 36.0 (32.5, 39.5) 38.7 (35.1, 42.0) 46.8 (43.1, 50.4) 51.8 (47.5, 55.9)

Table 2. Evaluation of the sensitivity (Sens.), specificity (Spec.), positive predictive
value (PPV), false positive rate (FPR), false negative rate (FNR), accuracy (ACC),
balanced accuracy (BA), F1-score and Cohen’s Kappa coefficient (K) to identify sub-
jects at risk of emphysema progression according to ∆%LAA-950. The observed value
and 95% CI are expressed in percentage.

was observed between the predictions and the actual ∆%LAA-950 measurements
stratified by disease severity. However, we observed a reduction in the model’s
performance among subjects exhibiting slight emphysema progression or no pro-
gression (∆%LAA-950 < 0.3%).

In conclusion, the LobTe method presents itself as a potentially invalu-
able tool for monitoring disease progression and guiding treatment strategies
in COPD patients. Moreover, our study opens avenues for future research, em-
phasizing the need for validation in larger and more diverse cohorts and further
exploration of the underlying biological mechanisms. Such efforts will not only
reaffirm the significance of our findings but also advance personalized manage-
ment and treatment strategies for COPD, leading to more efficient healthcare
resource allocation.
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