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Abstract. Acquiring annotations for whole slide images (WSIs)-based
deep learning tasks, such as creating tissue segmentation masks or de-
tecting mitotic figures, is a laborious process due to the extensive im-
age size and the significant manual work involved in the annotation.
This paper focuses on identifying and annotating specific image regions
that optimize model training, given a limited annotation budget. While
random sampling helps capture data variance by collecting annotation
regions throughout the WSI, insufficient data curation may result in
an inadequate representation of minority classes. Recent studies pro-
posed diversity sampling to select a set of regions that maximally rep-
resent unique characteristics of the WSIs. This is done by pretraining
on unlabeled data through self-supervised learning and then clustering
all regions in the latent space. However, establishing the optimal num-
ber of clusters can be difficult and not all clusters are task-relevant.
This paper presents prototype sampling, a new method for annotation
region selection. It discovers regions exhibiting typical characteristics
of each task-specific class. The process entails recognizing class proto-
types from extensive histopathology image-caption databases and de-
tecting unlabeled image regions that resemble these prototypes. Our re-
sults show that prototype sampling is more effective than random and
diversity sampling in identifying annotation regions with valuable train-
ing information, resulting in improved model performance in semantic
segmentation and mitotic figure detection tasks. Code is available at
https://github.com /DeepMicroscopy /Prototype-sampling.

Keywords: Whole slide images - histopathology - annotation region se-
lection - low-data learning - image caption.
1 Introduction

Deep learning models for whole slide image (WSI) semantic segmentation and
mitotic figure detection can assist in tumor grading by identifying possible ma-
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lignant areas [14I14126]. High-quality annotations are crucial to properly train
these models, but the acquisition process of these annotations requires pathol-
ogists as annotators and is extremely time-consuming due to the large image
size in the gigapixel range and the substantial manual effort involved in the
annotation. Segmentation masks are generated at the pixel level, and careful
examination of thousands of cells is necessary to exhaustively identify mitotic
figures (cells undergoing division). This work focuses on discovering specific an-
notation regions that optimize model training, while leaving the rest of the image
unlabeled. This can help reduce the need for manual labeling or accommodate
a limited availability of expert annotators. Decreasing the annotation area has
been shown to efficiently streamline the process of producing segmentation masks
for WSIs [13U15l2227]; but, to our knowledge, it has not been used for acquiring
mitotic figure annotations. Here, annotators are frequently asked to exhaustively
annotate manually selected regions of interest [3], which could be considerably
simplified if cell examination was required only for a fraction of these regions
that are identified as informative.

Given a pool of unlabeled WSIs and a certain annotation budget, the task
is to find annotation regions that contain useful information for training the
model in the downstream task. One natural idea is random sampling, which
ensures data diversity by including tissue from different parts of the WSI. How-
ever, it may raise issues such as the selected regions inadequately representing
minority classes. Some works involve manually selecting annotation regions [13],
which necessitates expertise in estimating which information is most useful for
model training. However, humans may not fully recognize the varying degrees
of visual variety presented within each class [25]. In recent years, self-supervised
learning (SSL) techniques have popularized diversity sampling, which identifies
a set of regions that represent distinct features of the dataset with minimum du-
plication. Specifically, the pretrained model creates embeddings for all regions,
the embeddings are clustered and annotation regions are selected at the center
of each cluster [L0I21] or to maximally cover each cluster [1228]. However, the
optimal number of clusters is often not clear, and some clusters may feature
irrelevant information for training the downstream task model, such as artifacts.

In this work, we introduce a novel method called prototype sampling for the
specified task. It identifies annotation regions that exhibit typical characteris-
tics of each task-specific class without the need for clustering. Specifically, our
method involves collecting prototype embeddings for each class from extensive
histopathology image-caption databases, and identifying unlabeled regions that
closely resemble these prototypes. Two databases are used in the study: ARCH,
composed of figures and captions from PubMed articles and textbooks [9], and
OpenPath, encompassing Tweets where pathologists discussed cases [11]. These
resources significantly decrease the time and challenge of searching for class pro-
totypes. They offer a valuable and diverse collection of images showcasing both
typical and ambiguous aspects of many diseases and include a wide range of data
variations, including staining material and case origin. Similar to diversity sam-
pling, our approach uses a pretrained model to extract feature embeddings for
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the following sampling process. However, we assign unlabeled regions to task-
specific classes based on detected prototypes instead of relying on clustering
results. One use case of our method is the construction of the initial labeled set
of region-based active learning (AL) [19], which iteratively trains the model on
existing labeled regions and uses the trained model to determine which regions
to annotate next. An initial labeled set that efficiently trains the first AL model
can more reliably identify informative annotation regions in the subsequent AL
cycle. Another application is to create a preliminary model by annotating a small
portion of the data, and then use the model to automate further annotations or
propose reference annotations [5]. We test our method on semantic segmentation
and mitotic figure detection tasks by training the model using the annotation
regions selected through random, diversity, and prototype sampling.

2 Method

2.1 General Setup

Given a pool of N unlabeled WSIs and an annotation budget of n regions of
size | x | per WSI, the objective is to identify annotation regions containing
useful training information for the downstream task. The annotation regions
are detected based on a specified sampling method. In this section, we outline
random sampling and diversity sampling, which serve as benchmark methods
for our experiments. The random sampling method selects n regions from each
WSI at random locations; regions with less than 10% tissue area are excluded
by tissue detection [20]. We mainly followed [10] for diversity sampling. First,
each WSI is partitioned into a grid of regions of size [ x [. For each region we
calculate the feature embedding using a pretrained model. We then aggregate the
embeddings of all regions from N WSIs and allocate them to N #n clusters with
K-means clustering, in order to prevent the selection of similar images regions
from separate WSIs. Finally the regions centered at each cluster are selected.
Next we describe prototype sampling in detail.

2.2 Prototype Sampling

Prototype sampling has two main components: 1) the acquisition of prototypes of
each task-specific class from image-caption databases by keyword search or text-
to-image retrieval, and 2) the construction of a similarity map that shows the
similarity of different image areas to the prototypes. The similarity map is used
for the identification of annotation regions. An illustration is shown in Fig.

Class Prototypes Identification We obtain typical images of a specific class
from histopathology image-caption databases by keyword search or text-to-image
retrieval. Keyword search exploits the detailed information contained in captions
and is straightforward to conduct (Fig. [1] (1a)). Specifically, we create a set of
“with” and “without” keywords, and recognize images with captions that include
all “with” keywords and none of the “without” keywords. The “with” keywords
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Fig. 1: Workflow of prototype sampling.

are created using class names with several synonyms (e.g., “cancer” and “tu-
mor”), under the assumption that data analysis experts lack medical expertise.
The “without” keywords are used to exclude irrelevant images, such as those
of type photomicrograph. The recognized images are encoded into embeddings
f;i)ototype using a pre-trained image encoder, with c representing the class. Text-
to-image retrieval employs text and image encoders created through contrastive
language-image pretraining (CLIP) to align visual concepts from images
with the perception contained in the text (Fig. [1] (1b)). We use a text prompt
“An H&E image of {class_name} tissue.” and obtain its embedding from the
text encoder. All images in the database are encoded using the image encoder

to create Fyqtabase- Nprototype database image embeddings that have the highest
c)

cosine similarity to the text prompt embedding are selected to form ]—'I(,mwtype.
Similarity Map Construction and Annotation Region Selection We now
identify image regions from the WSI that are representative of the specified class.
We partition the WSI X; € R3*H:*W: into patches with a stride of s and then
calculate their embeddings individually using a pretrained model. We denote a
patch as z € R3*9*4 and its embedding as f, € RE, where Cy denotes the
embedding dimension. The size of the patches d and the level of magnification
used to extract the patches from the WSI pyramid are chosen according to the
task. For instance, a small patch extracted at high magnification is preferable
for comparing its resemblance to prototype images of mitotic figures, whereas
patches characterizing a gland should be sufficiently large to encompass all tis-
sue components. Note that each annotation region of size [ may contain multiple
patches of size d. The representativeness of patch x for class c¢ is defined as the
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highest cosine similarity between f, and the embeddings in F, () calcu-
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then combined into a similarity map M; € [0, 1]ix& for the WSI. The map
is used to select annotation regions using a standard or an adaptive region se-
lection method, denoted as “prototype (standard)” and “prototype (adaptive)”
accordingly. The standard method [19] moves a sliding window of the annotation
region size (i.e., é X é (note that [ is defined at the original resolution)) across M;
with a stride of 1 pixel, evaluates the similarity of each region by summing up
the similarities of patches within it, and then use non-maximum suppression to
identify non-overlapping regions with the highest similarity values. The adaptive
method [22] allows for selecting regions that can adjust in shape and size to ac-
commodate variations in histopathological structures. The process includes the
following steps: 1) Locate the pixel with the highest similarity (u,v); 2) Create
a binary mask by using a similarity threshold; 3) Identify the connected com-
ponent that includes (u,v) and choose its bounding box; and 4) Determine the
similarity threshold through bisection search to ensure that the bounding box
falls within the range [11 x 31,21 x 31].

3 Experiments

3.1 Image-caption Pair Databases

Two histopathology image-caption databases are used in the study. The ARCH
database [9] contains 8,617 histology or immunohistochemistry image-caption
pairs extracted from PubMed medical articles and 3,199 pairs from 10 textbooks.
The captions are manually curated to only include text related to diagnostic and
morphological descriptions. The OpenPath database [11] consists of 116,504
image-caption pairs from Twitter posts and 59,869 pairs from replies, gathered
from 32 pathology subspecialty-specific hashtags. The database does not contain
the extracted images and captions but only the links to the original posts. Image
and caption embeddings obtained from PLIP [11], which is trained by fine-tuning
a pre-trained CLIP model [23] on OpenPath, are included in the database.

3.2 Semantic Segmentation

Dataset The public dataset CAMELYON16 [17] consists of 399 WSIs of Hema-
toxylin & Eosin (H&E)-stained excised regional sentinel lymph nodes. The task
is the detection of the presence and extent of breast cancer metastases. Each
WSI with metastases is accompanied by a segmentation mask that outlines all
metastases at the pixel level. We followed data usages in [22] for fair comparisons.
Training Setups We followed [22] using a segmentation framework based on
patch classification, including all training setups, except for replacing the Mo-
bileNet [24] encoder with the two following encoders: 1) ResNet18 SSL [7]: A
ResNet18 that is self-supervised pretrained on 0.4 million histological patches
with SimCLR [6]; 2) ViT PLIP: The image encoder (ViT-32-Base) of PLIP.
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Training and inference patches were extracted at the resolution of 0.25 };—T with
256 x 256 pixels and 224 x 224 pixels for the two encoders, respectively.
Creating Class Prototypes We used the ARCH and OpenPath databases
for obtaining class prototypes for the experiments with the two encoders. From
ARCH, we extracted breast cancer images by keyword search. We used {breast,
abnormal (tumor, cancer, carcinoma, metastases, metastasis, metastic)} and
{IHC (immunohistochemical, immunohistochemistry, immunostain), photomi-
crograph (photomicrography)} as the “with” and “without” keywords, respec-
tively, where synonyms are given in the parentheses. In total 21 images were
found. Details on the pre- and post-processing steps can be found in Table
These images were processed by the ResNet SSL encoder to generate image em-
beddings. Prior to this, the images were center-cropped to the size of model input
to maintain the original magnification and prevent distortion of the structures.
From the OpenPath database, where the image embeddings are provided, we se-
lected the top Nprototype = 100 image embeddings under the hashtag “# Breast-
Path” that best align with the embedding of the context prompt of “An H&E
image of breast tumor tissue.” generated by the PILP text encoder.

WSI Similarity Map Calculation Patches of size 256 x 256 pixels were ex-
tracted at resolution 0.25 Y2 with a stride of 256 pixels to ensure the incorpo-
ration of details required for metastases identification.

Comparison Methods We compared to random sampling and diversity sam-
pling. For fair comparisons, the two encoders were used to obtain region features
in diversity sampling instead of pretraining a new model on the unlabeled data.
Prior to this, the regions were downsampled to match the model input sizes.
Evaluation Scenarios and Metrics Recent works have found that the effi-
ciency of a sampling strategy may differ depending on the the number and size
of the annotation regions [18/19]22], we follow [22] to evaluate on nine hyperpa-
rameter settings by combining n € {1,3,5} and [ € {4096, 8192, 12288} pixels.
We denote these three sizes as S (small), M (medium) and L (large), respectively.
Slide-averaged intersection over union across test slides containing tumor (mloU
(tumor)) was used as the evaluation metric, following [22].

3.3 Mitotic Figure Detection

Dataset The MITOS WSI_CMC [2] dataset consists of 21 slides of canine
mammary carcinoma that are fully annotated with 13,907 mitotic figures. The
task is to identify all mitotic figures in the WSIs, as mitotic count is a key criteria
for tumor grading [8]. We followed data usages in [2] for fair comparison.

Training Setups We followed [2] using a RetinaNet [16] (ResNet18 backbone
pretrained on ImageNet) as the mitotic figure detection model and the same
training schemes, the only modification was sampling 1,000 training patches per
epoch instead of 5,000 when the annotated area was < 5% to avoid overfitting.
Creating Class Prototypes We used ARCH to extract prototypes of mitotic
figures by keyword search. The “with” keyword set included {arrow (arrowhead,
circle), mitotic (mitoses)}, as mitotic figures are often highlighted with arrows
or circles (see examples in Fig.|3| (a-b)). In total 19 images were identified, from
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(a) CAMELYON16 (ResNet18 SSL) (b) CAMELYON16 (ViT_PLIP) (c) MITOS_WSI_CMC (ResNet18)
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Fig. 2: (a-b) Results on CAMELYON16 dataset: mIoU (Tumor) and annotated
tumor area (%) as functions of annotated tissue area (%). (¢) Results on MI-
TOS_WSI CMC dataset: F1 and the ratio of annotated mitotic figures as func-
tions of annotated tissue area (%). Prototype (adapt) can have different amounts
of annotated area as the size of each selected region is dynamically determined.
All other methods select regions of size | x [. Random sampling can lead to a
slightly smaller annotated area when no more non-overlapping region containing
at least 10% tissue is found. All results show median values from five repetitions.

each a section including the mitotic figure was manually cropped. We resized all
sections to 64 x 64 pixels and calculated features using the ResNet18 backbone.
WSI Similarity Map Calculation Patches of size 64 x 64 pixels (0.25 ‘}‘)—r;, a
stride of 64 pixels) were extracted to include only one or a few cells per patch.
Comparison Methods The same settings in the CAMELYON16 experiments
were used, using the ResNet18 backbone to extract region features.
Evaluation Scenarios and Metrics The same settings in the CAMELYON16
experiments were used. The three region sizes [ € {4096, 8192, 12288} pixels
correspond to annotation areas of {1.05, 4.19, 9.44} mm?, enclosing the recom-
mended area for performing mitotic count (10 high power field (HPF), 2.37
mm?). The F1 score was used as the evaluation metric, following [2].

3.4 Results

Figure [2| shows the results across all methods. Given a certain budget for an-
notation area, prototype sampling is more effective than random and diversity
sampling in creating a labeled set that maximizes model outcome on both tasks
of breast cancer metastases segmentation and mitotic figure detection. This could
be attributed to the increased ratios of tumor area and mitotic figures identified
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Fig.3: (a-b) Two example prototype images of mitotic figure. (c-d) An example
WSI and its similarity map. Ground truth mitotic figures marked green in (c)
and red in (d). The blue boxes in (¢) and (d) indicate regions selected with
random and prototype sampling, respectively (hyperparameter: 3_M).

and annotated. Notably, prototype sampling achieves near full annotation per-
formance in CAMELYON16 (ViT_PLIP) and MITOS WSI _CMS (ResNet18)
experiments by annotating less than 20% of the tissue area, without the iterative
process of annotation region identification in the conventional AL procedures,
leading to substantially reduced computational costs. Specifically, on the CAME-
LYON16 dataset, prototype sampling shows a smaller performance benefit over
the other two methods when selecting a large number of regions per WSI, (e.g.,
in the cases of 3 L and 5 M). This might be because multiple similar regions all
possessing tumor characteristics are selected from the same WSI, leading to low
data diversity. A comparison between the adaptive and standard region selection
methods in Fig. [S1| provides further evidence to support this hypothesis: Anno-
tation regions selected using “prototype (standard)” contain a larger amount of
tumor area than the annotation regions selected by “prototype (adapt)”, but the
trained model shows inferior performance in segmenting tumors on the test set.
The standard method can identify a larger area of tumor for annotation as it
selects regions that have the highest number of patches resembling tumor, while
the adaptive method selects annotation regions centered at the patches that are
most similar to tumor prototypes. On the MITOS WSI CMC dataset, proto-
type sampling identifies annotation regions containing more mitotic figures than
the other two methods, leading to a consistent increase in model performance.
Here, “prototype (standard)” also outperforms “prototype (adapt)” as regions
with a larger number of patches resembling mitotic figure are identified for an-
notation (Fig. [S1). Figure 3| (d) provides an example of similarity map, where
areas with patches that closely resemble mitotic figure prototypes align well with
the areas containing ground truth mitotic figure annotations.

4 Discussion and Conclusion

We presented a novel method for selecting valuable annotation regions that
allows to effectively train the model without annotating the entire WSIs. These
regions are detected as possessing typical characteristics of each task-specific
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class based on their strong resemblance to prototypes recognized from image-
caption databases by keyword search or text-to-image retrieval. The efficacy of
our method has been proven in different tasks and evaluation settings.
Experiments on the breast cancer metastases segmentation task using both
ARCH and OpenPath databases allow evaluating the impact of image-caption
database quality on method robustness. While ARCH is well-curated with manu-
ally selected samples and cleaned captions, OpenPath is only subjected to image
quality sampling testing and automatic text cleaning. We expected that proto-
types obtained from OpenPath may have more noise, but we see no drawback
of using OpenPath in our experiments. This evaluation was prioritized over an
examination involving artificially introduced noise patterns (e.g., swapping cap-
tions of two randomly selected pairs), as it depicts “real-world” database quality
fluctuations. Future work will investigate the impact of prototype set size.
Particularly, our method can aid the annotation of minority classes. While
these classes may also have limited presence in image-caption databases, our
method help identify rare but existing samples or discover prototypes of related
diseases using prior knowledge. Concerns about finding prototypes for rare dis-
eases are further alleviated by ongoing efforts in creating larger and more diverse
histopathology image-caption databases to build powerful all-purpose models.
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