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Abstract. Learned 3-dimensional face models have emerged as valuable
tools for statistically modeling facial variations, facilitating a wide range
of applications in computer graphics, computer vision, and medicine.
While these models have been extensively developed for adult faces, re-
search on infant face models remains sparse, limited to a few models
trained on small datasets, none of which are publicly available. We pro-
pose a novel approach to address this gap by developing a large-scale
3D INfant FACE model (INFACE) using a diverse set of face scans. By
harnessing uncontrolled and incomplete data, INFACE surpasses previ-
ous efforts in both scale and accessibility. Notably, it represents the first
publicly available shape model of its kind, facilitating broader adoption
and further advancements in the field. We showcase the versatility of
our learned infant face model through multiple potential clinical appli-
cations, including shape and appearance completion for mesh cleaning
and treatment planning, as well as 3D face reconstruction from images
captured in uncontrolled environments. By disentangling expression and
identity, we further enable the neutralization of facial features — a cru-
cial capability given the unpredictable nature of infant scanning.

Keywords: 3D Infant Faces · Nonlinear Morphable Model · Unsuper-
vised Disentanglement

1 Introduction

The use of 3D face scans in clinical workflows has been limited, despite their
transformative potential in medical applications. Unlike traditional 2D imaging,
3D scans offer a comprehensive representation of facial morphology, enabling
the creation of precise digital twins of patients [7,15]. This advancement opens
avenues for data-driven models to enhance personalized treatment planning, sur-
gical simulation, and outcome prediction. Although several studies have demon-
strated the utility of 3D face scans in medical scenarios, they have predominantly
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focused on adult populations [10,11]. However, adapting these technologies for
pediatric use introduces unique challenges. Infants display spontaneous expres-
sions and frequent occlusions from objects such as pacifiers and hands, compli-
cating face scanning processes. Hence, developing accurate 3D infant face models
requires specialized methods to handle such unpredictable and incomplete data.

Face models derived from 3D databases primarily focus on adult faces, of-
ten employing linear or nonlinear morphable models to delineate facial shape
and appearance variations [2,16,8]. These models can incorporate multiple di-
mensions to provide semantic control over facial identity and expression [12,6].
Recent advances in developing infant face models [14,9,13] represent significant
progress, though they originate from small, curated datasets with limited vari-
ability, restricting their scalability and generalizability. Our large-scale 3D INfant
FACE model (INFACE) improves upon these shortcomings, proving its versa-
tility through clinical applications, including realistic 3D inpainting for mesh
repair and treatment planning, alongside 3D reconstruction from monocular im-
ages captured in uncontrolled environments. Furthermore, the disentanglement
of expression from identity allows for effective face neutralization, addressing the
variable conditions of infant scanning. Our main contributions are:

– The first publicly available 3D infant face model, trained on a large-scale
dataset of incomplete face scans using an autoencoder, thereby considering
geometric corruptions arising from occlusions during the scanning process.

– The first multi-nonlinear infant face model enabling individual manipulation
of identity, facial expression, and age.

– A quantitative evaluation of the face model, compared to its PCA equivalent
and to a state-of-the-art adult face model.

– Several applications of the infant face model, including realistic shape and
appearance completion (for geometry repair and deformity correction), 3D
reconstruction from uncontrolled images, and expression neutralization.

2 Methodology

Our primary objective is to develop a 3D infant face model using a large dataset
of uncontrolled and incomplete scans. To this end, we detail the process of learn-
ing such a model via masked autoencoder training. Afterwards, we introduce an
advanced model specifically developed to disentangle identity, expression, and
age in a fully unsupervised manner.

2.1 3D Face Model

INFACE is based on a dataset comprising labeled 3D face scans of healthy indi-
viduals. It features uncontrolled facial expressions and corrupted geometry and
texture resulting from frequent occlusions during scanning, such as pacifiers and
hands. We employ segmentation techniques to isolate these corrupted regions,
ensuring robust registration to a template topology through NICP [1] (cf. Sec-
tion 3). In contrast to the predominant use of PCA models for face modeling
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Fig. 1: Raw face scans are manually landmarked and artifacts segmented to be
excluded from registration, yielding artifact-free reconstructions from our model.

[2,16], we opt for training a fully-connected autoencoder, enabling the unsu-
pervised disentanglement detailed in Section 2.2 while additionally facilitating
seamless integration of partial geometry defined by our segmentation masks [17].
Formally, the masked loss Lr between an input scan X and its reconstruction
g(f)(X) via our model g(f) is defined as

Lr(g(f)(X),X) =

∑
i∈M ℓ(g(f)(X),X)i

|M|
, (1)

where M defines the mask set containing all indices marked as registered, and
ℓ denotes the element-wise loss function between X and g(f)(X). We train two
autoencoders to model shape and appearance separately using the per-vertex
3D position and RGB color information. Figure 1 illustrates the data processing
pipeline and model reconstruction.

2.2 Multi-Nonlinear Representation

As infants do not adhere to scanning protocols aimed at capturing a predefined
set of facial expressions, we follow Zhou et al. [21] to learn a disentanglement
of identity and expression in unsupervised settings, i.e., without requiring any
expression labels or a neutral expression common to all identities, via iterative
separation during neural network training. We further expand upon this method
by additionally separating age from the identity and expression spaces, leverag-
ing scans of the same patients acquired at multiple-month intervals. To this
end, we extend the tripled sampling proposed by Zhou et al. [21] to a quadru-
plet (Xs

1,X
s
2,X

s′ ,Xt) of scans for each batch element during training. While
these four samples may all exhibit unique expressions, identity is shared among
(Xs

1,X
s
2,X

s′), where (Xs
1,X

s
2) additionally share age. Weight-independent en-

coders fβ , fθ, and fα map these four samples separately to their respective
identity, expression, and age latents, before the decoder g reconstructs an in-
put sample from a mixture of these latents, thus exploiting the samples’ shared
features to encourage disentanglement during encoding. Specifically, the masked
cross consistency loss LC reconstructs Xs

2 via
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Fig. 2: Left and middle left: Distribution of masked geometry and texture regions,
averaging 16 ± 12% and 27 ± 22%, respectively, across our dataset. Middle
right: Distribution of geometry test reconstruction error, 0.23± 0.05mm. Right:
Distribution of nasolabial test reconstruction error, 1.95± 1.09mm.

LC = Lr

(
g
[
fβ(X

s′), fθ(T (Xs
2)), fα(X

s
1)
]
,Xs

2

)
, (2)

whereas the masked self consistency loss LS reconstructs Xs
1 as

LS = Lr

(
g
[
fβ(X

s′), fθ(T (X̃t′)), fα(X
s
2)
]
,Xs

1

)
, (3)

using the intermediate X̃t′ for the expression latent, generated on the fly as

X̃t′ = ARAP
(
Xt, g

[
fβ(X

t), fθ(T (Xs
1)), fα(X

t)
])

. (4)

The As-rigid-as-possible (ARAP) deformation and expression-invariant trans-
formations T discourage degenerate solution where identity-related features leak
into the disentangled expression code [21]. The full training loss is then computed
as a uniform average of LC and LS .

3 Data Acquisition and Processing

We compiled a dataset of 2394 3D scans from 816 pediatric patients with normal
facial morphology, aged 9±6 months, from the University Hospital Basel and the
Cantonal Hospital Aarau. Our dataset maintains equitable gender distribution,
with a strong predominance of Caucasian infants. 95% of the scans were captured
using the VECTRA M5 device [7], covering the full head with five cameras, while
the remaining scans were obtained with the 3dMDtrio [15] scanner, employing
three cameras for rapid facial data capture. Despite comprising approximately
17 000 vertices in the facial area and high-res textures from raw photos, many
scans exhibit artifacts due to camera limits and typical infant scanning challenges
(e.g., varying head poses, occlusions, movements).

To address artifacts affecting registration and training, we manually marked
on average 16± 12% of facial geometry and 27± 22% of textures as corrupted.
The distribution of these areas is illustrated in Figure 2 for geometry and texture,
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Fig. 3: Average reconstruction error for PCA and our autoencoder on the test
set, grouped by data subsets sorted by quality, for latent dimensions 64 (left)
and 128 (middle). Model comparison across various latent dimensions (right).

respectively (left and middle left). We implemented an advanced landmarking
approach, deploying 112 points to navigate around these corrupted areas, as they
sometimes obscure typical landmarks. Beyond pinpointing standard markers like
eye corners and glabella, our scheme also traces curvilinear facial features, such
as eyebrows and nasolabial folds, through series of interconnected landmarks,
allowing the template to align accurately by iteratively matching these curves.
This comprehensive landmarking ensures precise correspondence in unoccluded
regions, while excluding affected areas from registration. Landmarks and seg-
mented sections are depicted in the second image of Figure 1.

4 Experiments and Results

We first discuss implementation specifics of our model training process, followed
by evaluations of the performance of INFACE and its design decisions.

4.1 Training Details

We use distinct training, validation, and test sets with no patient overlap. The
test set comprises 50 scans with minimal artifacts, whereas the remaining data
were randomly divided into 90% for training and 10% for validation. We trained
two autoencoders on per-vertex 3D position (standard and multi-nonlinear shape
model) and another one on RGB data (appearance model), resulting in input
vectors of 15 570 for all models. Each encoder and decoder features a single
256-sized hidden layer with leaky ReLU activation and latent dimensions of 256
for appearance, 128 for the standard shape model, and (32, 64, 1) respectively
for identity, expression, and age in the multi-nonlinear model. We chose L1 as
per-element reconstruction loss ℓ similar to previous work [6,21,13], and added
L1 regularization to counter overfitting and ensure model compactness. Model
parameters were optimized in approximately one day on a single NVIDIA RTX
2080 Ti using PyTorch’s ADAM for 10 000 epochs and a batch size of 8 at an
initial learning rate of 1 × 10−4, which was progressively lowered upon valida-
tion error convergence. The expression-invariant transformations T employed
during training of the multi-nonlinear model consisted of independently rescal-
ing each axis of the mesh within the range [0.7, 1.3] and adding Gaussian noise
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Samples Crying Surprised Smiling Whining Younger Older

Fig. 4: Left: Expression transfer and age variation demonstrated on two distinct,
randomly sampled identities. Right: TSNE-mapped latent distribution of iden-
tity versus expression encoded for multiple scans of 20 unique identities, marked
in distinct colors.

N (0, 0.05mm) independently to each vertex. The simple, shallow architecture
ensures the trained model is easy to adopt and allows for sampling in the order
of 100 meshes per second on a modern CPU.

4.2 Model Evaluation

Generalization We report the test reconstruction errors for our shape autoen-
coder and a classical PCA model [2,3], which were trained on varied data subsets.
This analysis considers latent dimensions 64 and 128, as shown in Figure 3 (left
and middle). The data subsets were sorted by artifact size, serving as a metric
for scan quality. When training the models on small high-quality subsets, PCA
performs significantly better than when using larger sets of the data, whereas
our autoencoder outperforms PCA’s best result when trained on the complete
dataset, affirming our masked training approach.
Latent dimension In Figure 3 (right), we show the average reconstruction er-
rors for our autoencoder and PCA across various latent dimensions. The autoen-
coder was trained on the complete data set and PCA on the 20% of data with the
highest quality (i.e., best performing PCA model). Converging at size 128, the
autoencoder consistently outperforms PCA (0.23± 0.05mm vs 0.33± 0.14mm).
Figure 2 (middle right) shows the distribution of the reconstruction error, using
the 128-dimensional autoencoder trained on the full dataset.
Multi-nonlinear model evaluation Due to the uncontrolled expressions in
our dataset, we could not establish a reliable quantitative evaluation of the dis-
entanglement. Instead, Figure 4 provides qualitative results for two sampled
identities and additional plots illustrating the separation in the latent encoding,
demonstrating meaningful identity-preservation while transferring expressions
and manipulating ages (continuous interpolations are shown in the supplemen-
tary video). However, it is important to acknowledge that the disentanglement
negatively impacts reconstruction accuracy, which is consistent with prior re-
search. Notably, our multi-nonlinear model converged at 2000 epochs with a test
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Appearance Autoencoder pix2pixHD

Inpainting

Fig. 5: Our pix2pixHD uses reconstructed shapes and low-res textures to inpaint
high-frequency details for realistic facial deformity and occlusion replacement.

Fig. 6: Using a raw input image [19], we predict 2D landmarks to reconstruct the
face in 3D with FLAME and INFACE. On the right, we show the distribution
of the average reconstruction error on our test set for both methods.

error of 0.79± 0.20mm, which is significantly higher than the standard model’s
error of 0.23± 0.05mm after 10 000 epochs.

5 Applications

We illustrate several potential clinical applications of our learned infant face
model, highlighting its relevance for incorporation into clinical practice.

5.1 Shape and Appearance Completion

Figure 2 (right) delineates the average nasolabial shape completion test error. To
improve texture realism in these reconstructions, we follow Chandran et al. [6]
by training a pix2pixHD [20] network for high-detail infusion into low-resolution
vertex colors, tailoring the method towards a constrained texture inpainting task.
During training, randomized regions [18] of high-frequency textures are replaced
with our model’s low-frequency reconstructions, achieving realistic shape and ap-
pearance completion at test time. Figure 5 showcases two applications: mending
occlusion-related gaps and correcting cleft lip deformities in 3D scans, extending
traditional 2D GAN methods [4]. These results underline the model’s utility in
simplifying scan capture and enhancing infant care by providing a valuable tool
for surgical planning and improved communication through realistic visuals.
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Fig. 7: From an input face scan (left, center left), we compute a neutralized
expression (middle) using the multi-nonlinear model, then compare it to the
face scan that most closely resembles a neutral expression (center right, right).

5.2 3D Reconstruction from Monocular Images

We use INFACE for the challenging and ill-posed task of 3D reconstruction
from single images. Unlike earlier efforts limited to synthetic samples [13], our
study applies 3D reconstruction to real infant photos. Given a set of landmarks
predicted on the 2D image via [19], we follow previous work [2,5] and optimize
camera and latent model parameters to align with the projected landmarks while
enforcing regularization to control deviation from the average latent model vec-
tor. We utilize two distinct sources for input data. Firstly, selected images from
a publicly available dataset [19] are employed to illustrate results visually. Sec-
ondly, quantitative analysis is performed on our test dataset, which comprises
ground truth image-scan pairs. Figure 6 demonstrates the superior performance
of our method in accurately reconstructing infant faces when compared to the
adult-oriented FLAME model [12], which fails to capture distinct facial features
of infants. Evaluated on our test set, INFACE has an average reconstruction error
of 1.69± 1.55mm, while FLAME reaches 2.26± 1.72mm. The error distribution
is visually illustrated in Figure 6 (right).

5.3 Neutralization of Facial Expression

Infant scanning often results in unpredictable behavior and uncontrolled fa-
cial expressions, adding considerable variability to scan data, thus complicat-
ing meaningful information extraction. Neutralizing these factors could enhance
data quality and consistency. Figure 7 illustrates the effectiveness of our multi-
nonlinear model in neutralizing expressions, highlighting its potential to enable
standardized assessment of facial morphology. Using an input face scan (left),
we compute the corresponding neutral expression (middle), and compare it to
the scan of the same identitiy that is closest to a neutral expression (right).

6 Discussion and Conclusion

We have presented a large-scale, multi-nonlinear 3D infant face model, which is
easy to adopt and holds significant promise in enhancing and standardizing the
understanding of infant facial morphology. By offering insights into the typical
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appearance, facial movement during expressions, and developmental changes in
infants, alongside making our shape model the initial publicly available resource,
we contribute to the progression of pediatric facial analysis and diagnosis. Fur-
thermore, INFACE offers a valuable tool for reconstructing 3D geometry from
monocular images taken in unconstrained real-world scenarios and for cleaning
erroneous 3D scans, thus enhancing the accuracy and reliability of medical imag-
ing data. Specifically, in the context of cleft lip reconstruction, INFACE serves as
a valuable guide for both medical practitioners and parents, facilitating informed
decision-making prior to surgery.

Looking ahead, several avenues for future research present themselves. Firstly,
automating the labeling process can streamline model training and improve ef-
ficiency. Additionally, efforts to eliminate racial bias by diversifying the dataset
will further enhance the model’s inclusivity and applicability across diverse pop-
ulations. Moreover, further investigation is required to bridge the gap between
accurate model reconstructions and intuitive feature disentanglement. This also
encompasses both visual and quantitative evaluations of aging, necessitating
suitable datasets to facilitate this analysis. Lastly, exploring novel approaches
[22] for 3D reconstruction from monocular images or videos using our learned
face model holds promise for expanding its utility in various imaging modalities.
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