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Abstract. Fréchet Inception Distance (FID) is a widely used metric for
assessing synthetic image quality. It relies on an ImageNet-based fea-
ture extractor, making its applicability to medical imaging unclear. A
recent trend is to adapt FID to medical imaging through feature extrac-
tors trained on medical images. Our study challenges this practice by
demonstrating that ImageNet-based extractors are more consistent and
aligned with human judgment than their RadImageNet counterparts.
We evaluated sixteen StyleGAN2 networks across four medical imaging
modalities and four data augmentation techniques with Fréchet distances
(FDs) computed using eleven ImageNet or RadImageNet-trained feature
extractors. Comparison with human judgment via visual Turing tests
revealed that ImageNet-based extractors produced rankings consistent
with human judgment, with the FD derived from the ImageNet-trained
SwAV extractor significantly correlating with expert evaluations. In con-
trast, RadImageNet-based rankings were volatile and inconsistent with
human judgment. Our findings challenge prevailing assumptions, provid-
ing novel evidence that medical image-trained feature extractors do not
inherently improve FDs and can even compromise their reliability. Our
code is available at https://github.com/mckellwoodland/fid-med-eval.
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1 Introduction

Fréchet Inception Distance (FID) is a commonly used metric for evaluating syn-
thetic image quality [1]. It quantifies the Fréchet distance (FD) between two

https://github.com/mckellwoodland/fid-med-eval
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Gaussian distribution curves fitted to embeddings of real and generated images.
These embeddings are typically extracted from the penultimate layer of an In-
ceptionV3 network trained on ImageNet. FID’s utility has been demonstrated
through its correlation with human judgment [2], sensitivity to distortions [1],
capability to detect overfitting [3], and relative sample efficiency [3]. Nonetheless,
the metric has faced criticism, including that the InceptionV3 network may only
embed information relevant to ImageNet class discrimination [4,5].

Three approaches exist for adapting FID to medical imaging. The first in-
volves using an InceptionV3 extractor trained on a large, publicly available medi-
cal dataset, such as RadImageNet, a database containing 1.35 million annotated
computed tomography (CT), magnetic resonance imaging (MRI), and ultra-
sonography exams [6,7]. While a RadImageNet-based FD considers medically
relevant features, its efficacy remains largely unexplored. One potential bias is
that networks trained for disease detection may focus too heavily on small, lo-
calized regions [8] to evaluate an entire image’s quality effectively. Additionally,
RadImageNet-based FDs may not generalize to new medical modalities [7] or pa-
tient populations. Our novel comparison of RadImageNet-based FDs to human
judgment revealed discrepancies, even on in-domain abdominal CT data.

The second approach utilizes self-supervised networks for feature extraction
[9]. These networks are encouraging as they create transferable and robust rep-
resentations [10], including on medical images [4]. Despite their promise, the
lack of publicly available, self-supervised models trained on extensive medical
imaging datasets has hindered their application. Our study is the first to em-
ploy self-supervised extractors for synthetic medical image evaluation. We find a
significant correlation between an FD derived from an ImageNet-trained SwAV
network (FSD) and medical experts’ appraisal of image realism, highlighting the
potential of self-supervision for advancing generative medical imaging evaluation.

The third approach employs a feature extractor trained on the dataset used
to train the generative imaging model [11,12,13]. While advantageous for do-
main coherence, the algorithm designer creates the metric used to evaluate their
algorithm, potentially resulting in unquantified bias. Moreover, the private and
varied nature of these feature extractors poses challenges for reproducibility and
benchmarking. Given these limitations, our study focuses on publicly available
feature extractors.

Our study offers a novel comparison of generative model rankings created by
ImageNet- and RadImageNet-trained feature extractors with expert judgment.
Our main contributions are:

1. Demonstrating that ImageNet-based feature extractors consistently produce
more realistic model rankings than their RadImageNet-based counterparts.
This finding raises concerns about the prevalent practice of using medical
image-trained feature extractors for generative model ranking without eval-
uating the efficacy of the proposed metric.

2. Identifying a significant correlation between an FD calculated with an ImageNet-
trained SwAV network and expert assessments of image realism, demonstrat-
ing that FSD is a viable alternative to FID on medical images.
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3. Benchmarking multiple data augmentation techniques designed to enhance
generative performance within limited data domains on medical imaging
datasets.

4. Introducing a novel method for evaluating visual Turing Tests (VTTs) via
hypothesis testing, providing an unbiased measure of participant perception
of synthetic image realism.

2 Methods

2.1 Generative Modeling

Four medical imaging datasets were used for generative modeling: the Segmenta-
tion of the Liver Competition 2007 (SLIVER07) dataset with 20 liver CT studies
[14]1, the ChestX-ray14 dataset with 112,100 chest X-rays [15]2, the brain tu-
mor dataset from the Medical Segmentation Decathlon (MSD) with 750 brain
MRI studies [16,17]3, and the Automated Cardiac Diagnosis Challenge (ACDC)
dataset with 150 cardiac cine-MRIs [18]4. Multi-dimensional images were con-
verted to two dimensions by extracting axial slices and excluding the slices with
less than 15% nonzero pixels.

Four StyleGAN2 [19] models were trained per dataset, using either adaptive
discriminator augmentation (ADA) [20], differentiable augmentation (DiffAug-
ment) [21], adaptive pseudo augmentation (APA) [22], or no augmentation, to
enable a comparison of synthetic quality. StyleGAN2 was chosen for its ability
to produce high-fidelity medical images [2] and its readily available data aug-
mentation implementations. While all of the data augmentation techniques were
created to improve the performance of generative models on limited data do-
mains, such as medical imaging, we are the first to benchmark the techniques
on medical images. Each model was evaluated using the weights obtained at
the end of 25,000 kimg (a kimg represents a thousand real images being shown
to the discriminator), except for the MSD experiments, which were limited to
5,000 kimg due to training instability. Our code and trained model weights are
available at https://github.com/mckellwoodland/fid-med-eval.

2.2 Human Evaluation

Human perception of model quality was assessed with one VTT per model. Each
test comprised 20 randomly selected images with an equal number of real and
generated images. Participants were asked to identify whether each image was
real or generated and rate its realism on a Likert scale from 1 to 3 (1: “Not
at all realistic,” 2: “Somewhat realistic,” and 3: “Very realistic”). The tests were
administered to five specialists with medical degrees. In addition to the VTTs,
1 https://sliver07.grand-challenge.org/
2 https://nihcc.app.box.com/v/ChestXray-NIHCC
3 http://medicaldecathlon.com/, CC-BY-SA 4.0 license.
4 https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html

https://github.com/mckellwoodland/fid-med-eval
https://sliver07.grand-challenge.org/
https://nihcc.app.box.com/v/ChestXray-NIHCC
http://medicaldecathlon.com/
https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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three radiologists were shown 35 synthetic radiographs per ChestX-ray14 model
and were asked to rank and provide a qualitative assessment of the models.

False positive rate (FPR) and false negative rate (FNR) were used to eval-
uate the VTTs. The FPRs represent the proportion of generated images that
participants considered to be real. FPRs near 50% indicate random guessing.
One-sided paired t tests were performed on the FPRs with α=.05 to benchmark
the data augmentation techniques. For each VTT, the average Likert ratings of
real and generated images were computed per participant. The difference be-
tween these average ratings (Diff) was then computed to compare the perceived
realism of real and generated images. Two-sample Kolmogorov-Smirnov (KS)
tests were conducted on the Likert ratings of the real and generated images with
significance level α=.10 to determine whether the ratings came from the same
distribution, indicating that the participants viewed the realism of the gener-
ated images to be equivalent to that of the real images. We are the first to use
the difference in average Likert ratings and the KS test for generative modeling
evaluation.

When taking a VTT, participants may be more likely to select either “real”
or “generated” when uncertain. This bias causes the average FPR to not fully
encapsulate whether participants can differentiate between real and generated
images. We propose a novel method for evaluating VTTs via hypothesis testing
to address this challenge. The method aims to demonstrate that the likelihood
of a participant selecting “real” is the same for both real and generated im-
ages. We define the null hypothesis P(p guesses real | G) = P(p guesses real | R)
where G represents the event that the image is generated and R represents
the event that the image is real for each participant p. We evaluate this hy-
pothesis using a two-sample t test with significance level α=.10, where the
first sample is the participant’s binary predictions for generated images, and
the second is their predictions for real images. We define the null hypothesis
P(random p ∈ P guesses real | G) = P(random p ∈ P guesses real | R) to eval-
uate VTTs for multiple participants P . We evaluate this hypothesis via a two-
sample t test with significance level α=.10, where the first sample is the FPR
and the second is the true positive rate of each participant.

2.3 Fréchet Distances

Quantitative evaluation of synthetic image quality was performed by calculating
the FD d(Σ1, Σ2, µ1, µ2)

2
= |µ1 − µ2|2 + tr(Σ1 +Σ2 − 2(Σ1Σ2)

1
2 ) [23] between

two multivariate Gaussians (ΣR, µR) and (ΣG, µG) fitted to real and generated
features extracted from the penultimate layer of eleven backbone networks: In-
ceptionV3 [24], ResNet50 [25], InceptionResNetV2 [26], and DenseNet121 [27]
each trained separately on both ImageNet [28] and RadImageNet [6], along with
SwAV [29], DINO [30], and a Swin Transformer [31] trained on ImageNet. The
first four networks were included to compare all publicly available RadImageNet
models to their ImageNet equivalents. SwAV and DINO were included to evalu-
ate the impact of self-supervision, as self-supervised representations have demon-
strated superior transferability to new domains [10] and richer embeddings on
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medical images [4]. Finally, a Swin Transformer [31] was included as transformers
have been shown to create transferable and robust representations [32]. We are
the first to use self-supervised and transformer architectures with FD for gener-
ative medical imaging evaluation. FDs were calculated between the entire real
dataset and 50,000 generated images. ImageNet-based FDs were calculated with
the StudioGAN repository [33]. Further implementation details are available on
our GitHub.

As the scale of FDs varies substantially by feature extractor, relative FDs
(rFDs) d(ΣR,ΣG,µR,µG)2

d(ΣR1
,ΣR2

,µR1
,µR2

)2
were computed with a random split of the real fea-

tures into two Gaussian distributions (ΣR1
, µR1

) and (ΣR2
, µR2

). Paired t tests
with significance level α=0.05 were conducted on the FDs to benchmark the
data augmentation techniques. The Pearson correlation coefficient (ρ) with sig-
nificance level α=0.05 was used to quantify the correspondence between FDs
and VTT metrics and the correspondence between individual FDs. We are the
first to consider whether medical image-based FDs are correlated with human
judgment.

3 Results

Table 1 summarizes the overall results of the VTTs, with detailed individual
participant outcomes available on our GitHub. The rFDs based on ImageNet
and RadImageNet are outlined in Tables 2 and 3, while the FDs can be found
in Tables S1 and S2 in the supplementary material. Model rankings based on
individual metrics are illustrated in Figure 1. Our analysis revealed consistent
rankings among all ImageNet-based FDs, aligning closely with human judgment.
In contrast, RadImageNet-based FDs exhibited volatility and diverged from hu-
man assessment. DiffAugment was the best-performing form of augmentation,
generating hyper-realistic images on two datasets.

ImageNet extractors aligned with human judgment. ImageNet-based
FDs were consistent with one another in ranking generative models, except for
on the MSD dataset, where human rankings were also inconsistent (Figure 1).
This consistency was reinforced by strong correlations between the FD derived
from InceptionV3 and all other ImageNet-based FDs across all sixteen models
(.84 < ρ < .99, p < .001). Furthermore, the ImageNet-based FD rankings aligned
with expert judgment (Figure 1). On the ChestX-ray14 dataset, ImageNet-based
FDs ranked generative models in the same order as the radiologists: DiffAug-
ment, ADA, no augmentation, and APA. Particularly promising was the SwAV-
based FD, which significantly correlated with human perception across all sixteen
models (ρ = .475 with Diff, p = .064).

RadImageNet extractors were volatile. RadImageNet-based FDs pro-
duced inconsistent rankings that were contrary to expert judgment. Notably, on
the SLIVER07 dataset, RadImageNet-based FDs ranked DiffAugment as one of
the poorest-performing models. However, all measures of human judgment iden-
tified DiffAugment as the best-performing model (see Figure 1). This discrep-
ancy is especially concerning considering RadImageNet’s inclusion of approxi-
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Table 1. VTT results. Columns 1 and 2 split the models by dataset and augmentation
technique (Aug): no augmentation (None), ADA, APA, and DiffAugment (DiffAug).
Columns 3 and 4 show average FPRs and FNRs, with FPRs near 50% implying random
guessing. Column 5 provides t test p-values, which tested if participants selected “real”
for real and generated images equally. Column 6 displays the average difference between
mean Likert ratings for real and generated images (Diff), with negative values indicating
that generated images were perceived as more realistic than real images. Column 7
presents KS test p-values, which tested if Likert ratings for real and generated images
came from the same distribution. ↑ and ↓ denote preferable higher or lower values.
Underlined boldface type represents the best performance per dataset. Gray boxes
indicate failure to reject the null hypothesis, suggesting that participants viewed real
and generated images as equivalent. † indicates decreased performance compared to no
augmentation.

Dataset Aug FPR [%] ↑ FNR [%] ↑ t Test Diff ↓ KS Test

ChestXray-14

None 48 58 p=.497 0.12 p=.869
ADA 32† 47† p=.340 0.28† p=.549
APA 34† 56† p=.082 0.24† p=.717
DiffAug 48 58 p=.616 -0.16 p=.967

SLIVER07

None 20 34 p=.424 0.68 p<.001
ADA 24 30† p=.748 0.52 p=.001
APA 10† 28† p=.232 0.82† p<.001
DiffAug 34 30† p=.825 0.22 p=.717

MSD

None 58 48 p=.543 0.08 p>.999
ADA 66 48 p=.217 -0.04 p>.999
APA 46† 38† p=.587 0.04 p>.999
DiffAug 50† 54 p=.812 -0.08 p>.999

ACDC

None 34 22 p=.470 0.52 p=.022
ADA 38 30 p=.653 0.38 p=.112
APA 28† 22 p=.707 0.46 p=.003
DiffAug 44 16† p=.015 0.28 p=.112

mately 300,000 CT scans. On the ChestX-ray14 dataset, the FD derived from
a RadImageNet-trained InceptionV3 network ranked the model without aug-
mentation as the best performing. In contrast, a thoracic radiologist observed
that both the APA and no augmentation models generated multiple radiographs
with obviously distorted anatomy. Conversely, the weaknesses of the DiffAug-
ment and ADA models were more subtle, with mistakes in support devices and
central lines.

APA and ADA demonstrated varied performance. Although APA
was designed to enhance image quality in limited data domains such as medical
imaging, it unexpectedly reduced the perceptual quality of the generated images
(t test on FPRs, p = .012), leading to an 18% reduction in the FPR on average.
While ADA outperformed APA (t test on FDs, p = .050), it did not significantly
affect participants’ ability to differentiate real from generated images (t test on
FPRs, p > .999). Despite both techniques underperforming in the VTTs, they
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Table 2. ImageNet-based rFDs. Columns 1 and 2 split the models by dataset and
augmentation technique (Aug): no augmentation (None), ADA, APA, and DiffAug-
ment (DiffAug). Columns 3-9 show rFDs computed using seven ImageNet-based extrac-
tors: InceptionV3 (Incept), ResNet50 (Res), InceptionResNetV2 (IRV2), DenseNet121
(Dense), SwAV, DINO, and Swin Transformer (Swin). ↓ denotes lower values are prefer-
able. Underlined boldface type indicates the best performance per dataset. † denotes
decreased performance compared to no augmentation.

Relative Fréchet Distances (ImageNet) ↓
Dataset Aug Incept Res IRV2 Dense SwAV DINO Swin

ChestXray-14

None 12.53 279.00 701.00 20.80 53.50 60.43 34.00
ADA 8.90 237.00 576.00 15.55 33.00 37.81 26.36
APA 17.58† 334.00† 1004.50† 39.85† 66.00† 82.23† 54.21†
DiffAug 7.68 146.00 441.00 13.25 25.00 34.51 22.79

SLIVER07

None 1.48 7.90 12.98 2.59 8.28 6.12 6.07
ADA 1.24 7.35 11.71 1.95 6.86 4.57 6.22†
APA 1.37 7.33 11.96 2.36 7.79 5.59 5.43
DiffAug 0.78 3.25 5.99 1.24 5.26 3.07 4.77

MSD

None 37.32 63.13 61.18 170.38 142.50 108.39 504.47
ADA 36.84 62.50 58.88 141.63 305.00† 121.90† 308.59
APA 43.63† 70.00† 81.76† 145.13 122.50 126.47† 196.65
DiffAug 46.32† 125.50† 79.88† 170.38 825.00† 138.11† 175.12

ACDC

None 49.67 86.48 121.14 87.46 118.00 140.15 111.07
ADA 20.99 31.66 49.94 35.95 76.40 65.52 61.49
APA 31.15 54.35 76.47 56.68 90.60 87.69 72.10
DiffAug 15.87 23.58 40.60 27.20 71.00 50.47 47.23

improved the rFDs for the SLIVER07 (t tests, p = .025 ADA, p = .016 APA)
and ACDC (t tests, p = .003 ADA, p = .004 APA) datasets.

DiffAugment created hyper-realistic images. DiffAugment outperformed
the other augmentation techniques across all FDs (t tests, p = .092 ADA,
p = .059 APA). DiffAugment was the only form of augmentation to significantly
enhance perceptual quality (t test on Diff, p = .001), resulting in an 81% reduc-
tion in the average difference between mean Likert ratings. Participants rated
images from DiffAugment-based models as more realistic than those from both
the ChestX-ray14 and MSD datasets. Additionally, Likert ratings for real and
generated images from all DiffAugment-based models did not differ significantly
(KS test, p = .793), suggesting that participants perceived them as equivalent.

4 Discussion

RadImageNet-based FDs may have underperformed due to several factors. First,
networks trained for disease detection place a greater emphasis on local regions
than their ImageNet counterparts [8], likely affecting their ability to evaluate the
quality of an entire image. Second, medical images are highly heterogeneous, in-
cluding differences across modalities, acquisition protocols, patient populations,
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Table 3. RadImageNet-based rFDs. Columns 1 and 2 split the models by dataset
and augmentation technique (Aug): no augmentation (None), ADA, APA, and Dif-
fAugment (DiffAug). Columns 3-6 display rFDs computed using four RadImageNet-
based extractors: InceptionV3 (Incept), ResNet50 (Res), InceptionResNetV2 (IRV2),
and DenseNet121 (Dense). ↓ denotes lower values are preferable. Underlined boldface
type indicates the best performance per dataset. † denotes decreased performance com-
pared to no augmentation.

Relative Fréchet Distances (RadImageNet) ↓
Dataset Aug Incept Res IRV2 Dense

ChestXray-14

None 140.00 75.00 80.00 40.00
ADA 660.00† 135.00† 190.00† 80.00†
APA 280.00† 65.00 80.00 80.00†
DiffAug 280.00† 50.00 90.00† 30.00

SLIVER07

None 3.67 3.14 6.00 4.33
ADA 1.89 1.86 3.75 2.33
APA 2.22 1.86 3.00 2.67
DiffAug 4.67† 3.29† 5.50 4.67†

MSD

None 53.00 32.50 32.50 40.00
ADA 36.00 27.5 37.50† 60.00†
APA 54.00† 32.50 40.00† 40.00
DiffAug 1551.00† 1105.00† 350.00† 615.00†

ACDC

None 26.64 19.00 20.33 32.50
ADA 10.18 9.25 9.67 13.00
APA 14.09 8.75 11.67 17.50
DiffAug 12.09 15.25 9.67 10.50

and image processing techniques. RadImageNet does not contain chest X-rays
nor cine MRIs. Furthermore, it was collected from a single radiology facility [6],
making it likely that the protocols, machinery, and patients populations differed
from those of the SLIVER07 and MSD datasets.

5 Conclusion

Our study challenges prevailing assumptions by providing novel evidence that
medical image-trained feature extractors do not inherently improve FDs for syn-
thetic medical imaging evaluation; instead, they may compromise metric consis-
tency and alignment with human judgment, even on in-domain data.
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ference in mean Likert scores (Diff), and FPRs. Rows represent models trained with
different augmentation techniques on the same dataset. Models are ranked 1-4 in de-
scending order of performance and are differentiated by color. Vertical bars denote a
shared rank.
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