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Abstract. Neural networks can learn spurious correlations that lead to
the correct prediction in a validation set, but generalise poorly because
the predictions are right for the wrong reason. This undesired learning of
naive shortcuts (Clever Hans effect) can happen for example in echocar-
diogram view classification when background cues (e.g. metadata) are
biased towards a class and the model learns to focus on those back-
ground features instead of on the image content. We propose a simple,
yet effective random background augmentation method called BackMix,
which samples random backgrounds from other examples in the training
set. By enforcing the background to be uncorrelated with the outcome,
the model learns to focus on the data within the ultrasound sector and
becomes invariant to the regions outside this. We extend our method in a
semi-supervised setting, finding that the positive effects of BackMix are
maintained with as few as 5% of segmentation labels. A loss weighting
mechanism, wBackMix, is also proposed to increase the contribution of
the augmented examples. We validate our method on both in-distribution
and out-of-distribution datasets, demonstrating significant improvements
in classification accuracy, region focus and generalisability. Our source
code is available at: https://github.com/kitbransby/BackMix
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1 Introduction

Echocardiography (echo) is one of the primary cardiovascular imaging modalities
used to study the structures and function of the heart from a variety of cross-
sectional views (Figure 1). Classification of the view is a necessary first step in
automated echo analysis as views are not labelled during acquisition, and are
required for reliable interpretation [17]. Furthermore, the development of an ac-
curate automated classifier is challenging due to the extensive time required to
manually label studies for training data, which are often several thousand frames
in total. Several convolutional neural network based methods have been used to
create echo view classifiers [17, 18, 10, 15] demonstrating excellent performance.

An echo video consists of ultrasound images framed within a triangle or
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Fig. 1. Examples of echocardiograms: Unwanted text and measurement data can be
seen in regions outside the ultrasound sector. View label superimposed on bottom left.

trapezoid known as the ultrasound “sector”, set against a black background
with patient and acquisition metadata overlaid on top. Metadata outside of
the sector can spuriously correlate with the ultrasound view classification label,
leading neural networks to focus upon these features instead, as visualised in the
GradCAM [16] feature attribution heatmaps of Figure 2. Such shortcuts allow
learning of simple decision rules, thus limiting the classifier’s capacity to build
accurate and trustworthy heart representations. This behaviour can be difficult
to detect as test data used for model validation are typically drawn from the
same distribution (i.d) as training data, and can therefore leverage shortcuts
leading to artificially high performance. Once deployed in the wild however, the
quality of the view classifier may deteriorate when it encounters out of distribu-
tion (o.o.d) images from different medical sites, acquisition protocols or scanner
manufacturers, all of which are non-patient specific and can affect metadata.

A standard preprocessing step is to remove the area outside the sector using
image segmentation, as for instance demonstrated in the CAMUS dataset [12].
However, this is limited by unreliable performance in edge cases, may require
training additional networks, and adds significant computation time during infer-
ence. Another perspective involves leveraging attention, which implicitly learns
to focus on image regions [4]. However without direct supervision, attention net-
works may also focus on spurious correlations to minimise the objective function
during training. Ma et al. [14] address this in a natural image setting by supervis-
ing with saliency maps learnt from eye-gaze data. Despite excellent performance,
this model requires an encoder-decoder as part of a multi-model pipeline, which
adds to computational expense. Bassi et al. [3] integrate an interpretable layer-
wise relevance propagation (LRP) [2] module, which estimates the contribution
of each pixel by using back-propagated gradients. This approach does not change
the architecture and adds minimal computation; however LRP attention maps
are not perfect representations, and can be noisy and non-discriminative [9].

We propose a simple yet effective random background augmentation method
called BackMix, which encourages a classification network to focus on the area
inside the ultrasound sector. We initially split a training image into sector and
background regions, and then randomly replace the background with a back-
ground from another training example. By making the background uncorrelated
to the outcome, the model learns to ignore the background and becomes invari-
ant to the spurious regions. Our method has the advantage of not adding any
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Fig. 2. Examples of shortcut learning in TMED dataset induced by metadata, which
can be specific to the manufacturer, software and operator, but not the patient.

parameters or architectural changes, nor does it incur any additional training or
inference time. The closest works to ours have applied background blurring [13],
foreground in-painting for segmentation [5] and image synthesis [21] in natural
image settings, however ours explores the impact on o.o.d performance and is
the first to be applied to non-natural medical images.

Similarly to the above learning-based methods, training requires segmenta-
tion masks that separate ultrasound sectors from backgrounds prior to applying
any augmentation. To avoid the need of acquiring segmentation masks for all
training data, we extend our method to a semi-supervised setting where Back-
Mix is only applied to a fraction of the training data. The positive effects of
BackMix are maintained when as little as 5% of the training dataset is used
in augmentation. Our methodology is strengthened by re-weighting the classi-
fication loss at an example level, so that a higher loss is assigned to examples
that use BackMix. Despite such minimal supervision we achieve a significant
improvement in performance on an o.o.d dataset against a baseline classifier
trained without BackMix. We evaluate our hypothesis through GradCAM [16]
analysis to show both quantitatively and qualitatively that our model focuses
more on the ultrasound data within the sector and ignores spurious features.

Contributions: We identify that shortcut learning of background metadata
harms generalisability in echocardiogram view classification and propose an ef-
fective background mixing augmentation called BackMix. We explore a semi-
supervised setting and demonstrate that minimal numbers of segmentation masks
are required for significant improvements in classification and focus metrics. Our
method is strengthened with wBackMix, which emphasises examples with ran-
dom backgrounds by appropriately re-distributing the loss. We show that our
method removes the need for background removal in inference, a common and
computationally expensive requirement. Finally, we propose two metrics to quan-
titatively evaluate how much the ultrasound sector affects the prediction label.
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Fig. 3. Training schematic: Backgrounds are shuffled between a subset of training
examples, and the prediction loss re-weighted in favour of these examples

2 Methods

2.1 BackMix

We implement an augmentation method, tailored to ultrasound data, called
BackMix, which randomly swaps backgrounds between images in the training
set. During training, we separate an image i into sector Si and background Bi

using a segmentation mask Mi and in-paint the empty areas with zeros (value
of background). An additional frame j is then randomly sampled and the same
process is applied to yield Sj and Bj . Si is superimposed onto Bj to replace SiBi

and synthesise a new sample SiBj that is used for training. This augmentation
process is illustrated in Figure 3.

We apply BackMix augmentation after standard augmentations, such as ran-
dom image rotations in the range [-30◦, +30◦], brightness-contrast adjustment,
and horizontal flipping. BackMix is evaluated when training a ResNet18 [6] net-
work, that is selected due to its widespread use and computational efficiency,
although there is no restriction in the choice of backbone network architecture.
During inference there is no need for segmentation masks. As demonstrated in
Section 3, training with BackMix augmentations encourages the classification
network to focus in the ultrasound sector.

2.2 Semi-Supervised classification

Pixel-wise segmentation labels of the ultrasound sector are time consuming and
difficult to obtain as the sector boundaries are not always well defined. We thus
explore a semi-supervised approach, where only a fraction f of the training
dataset has sector segmentation masks available. BackMix augmentation is per-
formed only on the random f% sample of the training data, leaving the remain-
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ing (1− f)% of images untouched.3 The network’s focus is expected to correlate
with f and the backgrounds pool size that participate in the augmentation. We
observe this trend empirically, but find evidence that even with few segmenta-
tion masks, significant improvement in performance is seen when compared to
networks where BackMix is disabled.

2.3 wBackMix

In scenarios where f is small and BackMix is only applied to few examples,
the supervisory signal may be weak and overshadowed by the large quantity of
examples with no BackMix. We address this by re-weighting the cross-entropy
loss on an example-level to increase the contribution of augmented examples.
Specifically, we devise a weighting, which scales non-augmented examples by a
factor of 1 − λf and augmented examples by 1 + λ(1 − f). Parameter λ is a
constant that is found empirically. When λ is set to a value of zero, it weighs
all examples equally, but when increased, it puts more weight on augmented
examples. This weight formulation maintains the loss magnitude as the sum of
the loss weight in a batch is equal to 1, mitigating any undesirable changes in
the training dynamics of the model between experiments.

2.4 Evaluating Focus

To determine whether each model is attending to the pixels inside the sec-
tor when making a prediction, we devise two attention-based metrics: energy
percentage %E, and focus percentage %F . Firstly, GradCAM class activation
maps are calculated for every test image i ∈ I, which give an importance score
zp ∈ [0, 1] to pixels p ∈ i based on back-propagated gradients. For %E, the cor-
responding sector mask m ∈ M is used to compare the zp values of pixels inside
sector m ⊙ i with the zp values across the whole image i. This is formalised as
follows, where N is the test set size:

%E =
1

N

∑
i∈I,m∈M

∑
p∈m⊙i zp∑
p∈i zp

Higher values of %E indicate that the network is attending more to pixels
within the sector region. We also quantify the main regions of focus using %F ,
which only considers highly activated pixels where zp > 0.5. We determine the
fraction of these pixels that intersects with the sector mask as follows:

zh =

{
1 if zp > 0.5
0 otherwise

%F =
1

N

∑
i∈I,m∈M

∑
p∈m⊙zh

p∑
p∈zh

p

3 Note that during training, random backgrounds can only be sampled from frames
within the f% subset and not outside.
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Table 1. Comparison of Augmentation methods on TMED and WASE Normals
dataset. Bold indicates best performance

TMED (i.d) WASE Normals (o.o.d)
Accuracy F1 %E %F Accuracy F1 %E %F

Baseline 97.7 97.5 77.9 92.3 88.7 88.0 79.5 94.3
Black 96.2 95.7 81.8 97.4 89.8 89.4 80.8 96.8
Noise 95.5 95.0 83.7 97.4 89.3 88.8 81.9 96.5
Shuffle 96.6 96.2 82.6 96.8 89.9 89.4 82.1 96.2
Bokeh [13] 97.2 96.9 77.6 93.9 87.9 87.1 78.8 95.4
CutMix [20] 97.9 97.7 70.3 87.6 89.1 88.6 73.2 90.9
SMA [11] 97.2 96.9 82.8 95.3 88.0 86.8 81.9 96.5
BackMix 96.9 96.2 86.2 97.8 92.4 92.1 85.6 97.8

3 Experiments and Results

3.1 Datasets

We train a view classifier on TMED [8, 7] public dataset, a collection of echo
studies acquired in the course of routine care from 2011–2020 at Tufts Medical
Center, Boston, USA. A labelled subset of 24,964 frames from 1,266 patients
was extracted. We extensively validate the classifier generalisability on TMED
test set (in-distribution dataset), and WASE Normals [1], a large multi-site pro-
prietary dataset (out-of-distribution dataset). WASE Normals contains 36,029
echo videos from 2,009 healthy volunteers acquired at 18 sites from 15 countries.

Both datasets were filtered to retain the shared view labels, PLAX, PSAX-
AV, A2C and A4C, and split into train (80%), validation (10%) and test (10%)
sets at a patient level. A single random frame was sampled from each WASE
Normals video, resulting in a final dataset of 14,569 train (TMED), 1,670 vali-
dation (TMED), 1,815 i.d test (TMED), and 2,565 o.o.d test (WASE Normals)
frames. All images have resolution 112×112. Segmentation masks of the ultra-
sound sector were automatically generated and checked for quality manually4.

3.2 Implementation & Training

The baseline ResNet18 and training were implemented in PyTorch and Back-
Mix in Numpy. All models were trained for 100 epochs on a NVIDIA GeForce
RTX 2080 Ti with Adam optimiser, batch size of 64, and learning rate of 1e-3.
Weights from the epoch with the highest validation accuracy were saved. For
reliable performance estimates, all models were trained 3 times with 3 random
seeds (shared across experiments), the mean scores were used for quantitative
analysis and the model with median performance was used for qualitative anal-
ysis. Hyperparameters were tuned on a held-out validation set and set for all
experiments. Alongside the attention-based metrics, we also report mean accu-
racy, precision, recall and F1-score to evaluate classification performance.

4 The automatic mask generation was implemented by an in-house proprietary soft-
ware that uses classical image processing techniques.
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Fig. 4. Qualitative results on TMED with GradCAM heatmaps.

3.3 Comparison to Existing Methods and Ablation Study

We validated BackMix by comparing to various background-based configurations
and augmentations in literature. These are: (1) ‘Black’, where the background is
filled with zero values; (2) ‘Noise’, where the background is filled with random
noise sampled from a uniform distribution; (3) ‘Shuffle’, where the background
pixels are randomly arranged; (4) Bokeh [13], a method using background blur;
(5) CutMix [20], an augmentation strategy where pairs of images are mixed with
a soft label; (6) SMA [11], a contrastive learning method which separates object
and background in feature space without segmentation masks. Quantitative and
qualitative results are presented in Table 1 and Figure 4, respectively. We focus
on a single architecture (ResNet18) because the data used in this work is typi-
cally paired with that model [8, 19].

The decreased classification performance on TMED for background augmen-
tation methods is expected as the shortcuts aiding performance are not learnt
due to improved sector attention (higher %E and %F). Augmentation methods
which significantly alter images (‘Black’, ‘Noise’) fare worst in both i.d and o.o.d

Table 2. Semi-supervised classification for different amounts of supervision on an out-
of-distribution dataset (Wase Normals).

f λ Accuracy Precision Recall F1 %E %F

Baseline 0 - 88.7 91.2 87.1 88.0 79.5 94.3

+ BackMix

1 0 92.4 92.9 91.7 92.1 85.6 97.8
0.5 0 91.7 92.9 90.6 91.4 84.9 98.0
0.2 0 91.2 92.3 90.1 90.7 84.4 97.4
0.1 0 90.4 92.2 89.5 90.2 84.2 97.0
0.05 0 90.8 92.0 89.5 90.2 83.0 97.4
0.01 0 90.3 91.7 89.2 89.6 81.4 96.4

+ wBackMix
0.05 1 91.4 92.4 90.5 91.1 83.3 97.2
0.05 2 91.3 92.5 90.2 90.9 83.7 97.5
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Fig. 5. Qualitative results on WASE with GradCAM heatmaps.

test sets due to the incurred distribution shift. BackMix reduces this distribution
shift as all backgrounds contain similar patterns and pixel intensities. In com-
parison to other methods, BackMix attends the sector best (high %E and %F),
enabling learning generalisable representations of the heart. This is reflected in
the highest classification performance on the o.o.d dataset.

In Table 2, we validate BackMix and wBackMix in semi-supervised classifi-
cation under different amounts of supervision on the o.o.d dataset, and present
a variety of examples in Figure 5. As the proportion of data to which BackMix
is applied decreases, the performance naturally decreases. High performance is
maintained when using 5-10% supervision with an accuracy under 91% and an
F1 score over 90%. Performance increases when wBackMix is applied at 5% su-
pervision, achieving an accuracy and F1 score comparable to BackMix at 20%
supervision. The weighting value used appears to not have a significant impact,
and we would recommend a grid search to identify the best configuration.

To further assess our semi-supervised approach, we explore in an ablation
study to what extent the random selection of supervised training samples im-
pacts accuracy and focus. We run 5 BackMix experiments (f=0.05) with a fixed
random seed, but different non-overlapping supervised samples. We find stan-
dard deviations of ±0.55 for accuracy, ±0.55 for F1, ±1.01 for %E, and ±0.70 for
%F suggesting that the choice of samples has minimal impact on performance.
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4 Conclusion

Echocardiograms contain imaging data in a sector, and non-imaging features
that may induce shortcut learning outside the sector. Typically, image analysis
methods first need to pre-process and remove background features by applying
masks. However this is prone to errors, requires labels and is often computation-
ally expensive. In this paper, we propose BackMix and wBackMix, two augmen-
tation methods which encourage any classification network to focus on imaging
data, without the need for a mask during inference. Our results demonstrate that
networks trained with BackMix are able to focus more on the sector and ignore
spurious correlations in the background, even when augmentation is applied to
as few as 5% of training examples. We aim to extend BackMix in the future by
performing augmentation in feature space, without needing sector masks.

Disclosure of Interests. The authors have no competing interests to declare.
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