
Decoupled Training for Semi-supervised Medical
Image Segmentation with Worst-Case-Aware

Learning

Ankit Das⋆1 (�), Chandan Gautam⋆2,3, Hisham Cholakkal4, Pritee Agrawal,
Feng Yang1, Ramasamy Savitha2,3, and Yong Liu1

1 Institute of High Performance Computing (IHPC), Agency for Science, Technology
and Research (A*STAR), Singapore

{dasak,yangf,liuyong}@ihpc.a-star.edu.sg, priteeagrawal2006@gmail.com
2 Institute for Infocomm Research (I2R), A*STAR, Singapore

{gautamc,ramasamysa}@i2r.a-star.edu.sg
3 International Research Laboratory on Artificial Intelligence (IPAL),

CNRS@CREATE, Singapore
4 Mohamed bin Zayed University of Artificial Intelligence (MBZUAI)

hisham.cholakkal@mbzuai.ac.ae

Abstract. While semi-supervised learning (SSL) has demonstrated re-
markable success in natural image segmentation, tackling medical image
segmentation with limited annotated data remains a highly relevant and
challenging research problem. Many existing approaches rely on a shared
network for learning from both labeled and unlabeled data, facing diffi-
culties in fully exploiting labeled data due to interference from unreliable
pseudo-labels. Additionally, they suffer from degradation in model qual-
ity resulting from training with unreliable pseudo-labels. To address these
challenges, we propose a novel training strategy that uses two distinct
decoders—one for labeled data and another for unlabeled data. This
decoupling enhances the model’s ability to fully leverage the knowledge
embedded within the labeled data. Moreover, we introduce an additional
decoder, referred to as the “worst-case-aware decoder,” which indirectly
assesses potential worst case scenario that might emerge from pseudo-
label training. We employ adversarial training of the encoder to learn
features aimed at avoiding this worst case scenario. Our experimental
results on three medical image segmentation datasets demonstrate that
our method shows improvements in range of 5.6% - 28.10% (in terms of
dice score) compared to the state-of-the-art techniques. The source code
is available at https://github.com/thesupermanreturns/decoupled.

Keywords: SSL · Decoupled Training · Medical Imaging.

1 Introduction

Accurate segmentation of medical images is vital for various clinical applica-
tions [18,14,3]. While supervised semantic segmentation methods have demon-

⋆ Joint first author.
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strated effectiveness in numerous segmentation tasks [25,28], their reliance on a
substantial number of labeled samples poses challenges. Acquiring an adequate
amount of labeled data proves to be expensive and arduous, especially within
the medical domain. Semi-supervised learning (SSL) [10,13,7] emerges as one of
the most practical methods for training models with limited annotated data by
providing a mechanism to leverage unlabeled data, consequently diminishing the
demand for labeled data. The enhanced performance offered by SSL generally
comes at a low cost, given that unlabeled data can be used with minimal hu-
man involvement. Consequently, numerous SSL techniques have been developed
for the segmentation task [6,9,27] in the last decade. Notably, in recent years,
semi-supervised segmentation for medical images (Med-SemSeg) has garnered
significant attention from the research community [15,2,24,5], primarily owing
to the restricted availability of annotated data in the medical domain.

In the Med-SemSeg literature, the predominant methods often rely on pseudo-
labeling and consistency-based regularization (CBR) [11,16,24,23]. These exist-
ing methods have demonstrated the ability to harness knowledge from unlabeled
data for learning by using a shared network between the labeled and unlabeled
data. For example, a CBR-based mean-teacher network: where a network is
shared between the teacher and student. Similarly, a typical pseudo-labeled-
based approach [19] which also uses a shared network for labeled and unlabeled
data. These shared network-based approaches iteratively improve the model’s
performance by using its predictions on the unlabeled data as pseudo-labels.
While these approaches have shown encouraging outcomes, the performance of
these shared networks suffers from the inherent unreliability of pseudo-labels,
introducing two significant issues:

Prob.1: Training a shared network with both labeled (true labels) and unlabeled
(unreliable pseudo-labels) data interferes with the model’s capability to fully ex-
ploit the true labels.

Prob.2: Training models using unreliable pseudo-labels can degrade model qual-
ity, particularly through iterative training with these pseudo-labels.

The first issue is addressed by introducing a decoupled training approach. It
involves the utilization of a common encoder in combination with two specialized
decoders for labeled and unlabeled data, ensuring a clear distinction between the
tasks of pseudo-label generation and application. This decoupling of decoders
facilitates the network in retaining valuable information from labeled data using
one decoder, enabling it to generate high-quality pseudo-labels.

To address the second issue of model degradation from training with unre-
liable pseudo-labels, one way is to compute the error from pseudo-labels and
adjust the model to nullify its effect. However, directly measuring this error is
not feasible due to the absence of ground truth data for the unlabeled samples.
The nature of unreliable pseudo-labels (due to absence of ground truth) may
cause the model to effectively learn only from the labeled data while making
errors on the unlabeled data. This is the worst case scenario for the model which
cannot learn new information from the unlabeled data. As a solution, we intro-
duce a worst-case decoder Dw, that optimizes the encoder to generate features
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to avoid this worst case, helping improve the model quality and performance on
unlabeled data. Overall, the contributions are summarized as follows:

– We address two challenges in shared training approaches for Med-SemSeg: (i)
partial exploitation of labeled samples due to a shared network (addressed by
decoupled training), and (ii) Decreased model quality resulting from training
with unreliable pseudo-labels (addressed by improved feature generation via
introducing a worst-case decoder).

– To validate the efficacy of the proposed method, we performed experiments
on three publicly available medical imaging datasets which showcase signif-
icant improvements compared to the state-of-the-art (SOTA) methods.

2 Proposed Method

In semi-supervised medical image semantic segmentation, the goal is to achieve
generalization from a combined dataset consisting of both pixel-wise labeled
images Xl =

{
(xb

l , y
b
l ) : b ∈ (1, . . . , Bl)

}
and unlabeled images Xu =

{
xb
u :

b ∈ (1, . . . , Bu)
}
, where xb

l denotes training labeled samples and ybl represents
its corresponding ground truth masks, xb

u denotes unlabeled samples, Bl and
Bu denote the number of batches of labeled and unlabeled data, respectively
and Bl ≪ Bu. The overall objective of semi-supervised medical image semantic
segmentation can be expressed as a combination of losses on labeled (Ll) and
unlabeled (Lu) data as follows:

L = Ll + λLu, (1)

where λ is the trade-off parameter between losses on labeled and unlabeled data.
In the realm of semi-supervised methods, Lu plays a pivotal role in differentiating
these methods. Conversely, Ll typically computes cross-entropy loss between the
predicted and ground truth mask.

2.1 Method

The overall architecture of the proposed method is illustrated in Fig. 1. It com-
prises an encoder and three decoders: (i) the main decoder (Dl), (ii) the strong
augmented decoder (Ds), and (iii) the worst-case-aware decoder (Dw). It pro-
cesses batches containing both labeled and unlabeled data to generate segmen-
tations for medical images. The main decoder (Dl) is trained solely on labeled
samples using a supervised loss Ll

sup and is responsible for generating pseudo-
labels. The remaining decoders (Ds and Dw) address challenges related to the
partial exploitation of labeled data and the model quality resulting from unreli-
able pseudo-label training. The strong augmented decoder (Ds) is trained with
a weak-to-strong augmentation and consumes the pseudo-labels. Meanwhile, the
worst-case-aware decoder (Dw) engages in a min-max game to estimate the worst
possible scenario of pseudo-labeling and generates features to avoid this situa-
tion. It should be noted that (Dl) is used during inference.
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Fig. 1: Illustration of our proposed method.

2.2 Decoupled Training

The effectiveness of shared network-based Med-SemSeg methods is affected by
the use of unreliable pseudo-labels, leading to a deterioration in model perfor-
mance and a further decline in the quality of pseudo-labels. To address this
issue, we propose decoupling the generation and application of pseudo-labels
through two decoders, Dl and Ds. The main decoder Dl (Fig. 1) is exclusively
optimized using labeled data, avoiding the influence of unreliable pseudo-labels,
while providing predictions (pseudo-labels) for unlabeled data. This prevents the
main decoder Dl from being affected by unreliable pseudo-labels. Additionally,
we introduce another decoder, Ds, trained using pseudo-labels obtained from Dl.
Pseudo-labels generated by Dl are employed by Ds using weak-to-strong con-
sistency regularization for enhanced representational learning. Leveraging two
strong views and a weak view of unlabeled data, the model’s weak view output
serves as pseudo-labels for strongly augmented views. This approach enables the
model to generate diverse predictions for the same input, fostering robust feature
representation through weak-to-strong consistency. Thus, the proposed method
effectively decouples the generation and application of pseudo-labels, minimizing
the following loss for unlabeled data in decoupled training:

Lu
ws1(E,Ds) =

1

Bu

Bu∑
i=1

1(max(pw) ≥ η)Hc(Dl(E(Aw(xi
u))),

Ds(E(As1(xi
u)))) +

1

Bu

Bu∑
i=1

1(max(pw) ≥ η)Hd(Dl(E(Aw(xi
u))),Ds(E(As1(xi

u)))),

(2)
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where Hc denotes entropy minimization between two probabilistic distributions,
Hd denotes standard dice loss, η represents a threshold, pwi = Dl(E(Aw(xi

u))
denotes class distribution of pseudo-label, ps1i = Ds(E(As1(xi

u))) denotes pre-
dicted class distribution of ith unlabeled data for the first strong augmentation
As1. Similar to Equation 2, we compute Lu

ws2(E,Ds) loss using second strong
augmentation As2 instead of As1 in Equation 2. The final loss for the decoder
Ds is as follows:

Lws(E,Ds) = Lu
ws1(E,Ds) + Lu

ws2(E,Ds) (3)

2.3 Worst-case-Aware Learning

To address the risk of model degradation stemming from unreliable pseudo-
labels, it is essential to estimate the errors and adjust the model accordingly.
However, due to the lack of ground truth for unlabeled data, estimating errors
becomes infeasible, posing a challenge for the model to adapt and make neces-
sary adjustments. Consequently, the model may only learn to classify labeled
data, potentially leading to misclassification of unlabeled data. This represents
the worst-case scenario that can arise from unreliable pseudo-label training. To
address this challenge in the absence of a direct solution, we employ adversarial
learning to avoid this worst case. We introduce a worst-case-aware decoder, Dw,
which acts as an adversary who’s objective is to correctly classify labeled data
while misclassifying unlabeled data. Employing a min-max adversarial setting
between the encoder E and this decoder Dw, compels the encoder E to generate
features that evade this worst-case scenario. This ensures that the model avoids
the aforementioned situation, thereby enhancing overall model quality.

Lwa(E,Dw) =Lu
wa(E,Dw) + Ll

wa(E,Dw)

=min
E

max
Dw

1

Bu

Bu∑
i=1

1(max(pwi ) ≥ η)Hc(p
w,Dw(E(Aw(xi

u))))−
1

Bl

Bl∑
i=1

Hc(p
l
i,Dw(E(xi

l))),
(4)

where puadv,i = Dw(E(Aw(xi
u)))) and pladv,i = Dw(E(xi

l))) denote predicted class

distribution of ith unlabeled and labeled data by Dw, respectively. The predicted
class distribution of labeled data by Dl is denoted by pli = Dl(E(xi

l)).
Overall loss function: The optimization loss function of the proposed

method is formalized as follows:

min
E,Dl,DS

max
Dw

λsupLl
sup(E,Dl) + λwsLws(E,Ds) + λwaLwa(E,Dw), (5)

where λsup, λws, and λwa are the coefficient of different losses; Ll
sup(E,Dl) min-

imizes sum of cross-entropy loss and dice loss on the labeled data using encoder
E and decoder Dl.

3 Experiments and Results

We evaluate our proposed method on three commonly used datasets for medical
semantic segmentation, i.e., ProstateX [1], PROMISE12 [12], and CHAOS [8].
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Fig. 2: Visual comparison with different SOTA methods on PROMISE12 dataset
for different percentages of labeled data. The visual comparison of ProstateX,
and CHAOS datasets are provided in Fig. 1 of supplementary.

3.1 Datasets and Evaluation Metrics

ProstateX. The dataset includes 201 MRI scans with true mask segmentations
from the ProstateX Challenge [1]. It is divided into training, validation, and test
sets comprising 151, 19, and 31 scans, respectively.

Prostate MR Image Segmentation (PROMISE12). The dataset includes
transversal T2-weighted MRI scans of the prostate from 50 patients, with cor-
responding true mask segmentations [12]. It is split into 35, 5, and 10 cases for
training, validation, and testing sets, respectively.

Combined Healthy Abdominal Organ Segmentation (CHAOS). The
dataset consists of 20 MRI volumes from the 2019 CHAOS Challenge [8], divided
into subsets of 10, 5, and 5 cases for training, validation, and testing, respectively.

Evaluation Metrics. During the inference stage, predictions are produced slice
by slice and then stacked into a 3D volume. Our results are presented based
on three commonly used evaluation metrics: the Dice Similarity Score (DSC),
Hausdorff Distance 95 (HD95), and Average Symmetric Distance (ASD) [4].

3.2 Implementation Details

We implemented the proposed method using PyTorch and conducted experi-
ments on an NVIDIA A40 GPU with 128 GB RAM. The encoder-decoder ar-
chitecture utilized a standard U-Net [18] backbone, trained from scratch across
all datasets. Model convergence was achieved using an ADAM optimizer, run-
ning for 600 epochs with a batch size of 12 and a learning rate of 0.01 for all
experiments. Consistent weights were maintained for different losses throughout
the experiments: λsup = 1, λws = 0.5, λwa = 2. The ablation of λws and λwa is
provided in Table 1 and Table 2 of supplementary, respectively.

Data Augmentation. In our implementation, we utilize five types of data
augmentation techniques, namely (1) random rotation, (2) random flipping, (3)
color jitter, (4) random Gaussian blur, and (5) CutMix [26]. Random rotation
and flipping are applied as weak augmentation methods, while color jitter, ran-
dom Gaussian blur, and CutMix are utilized as strong augmentation techniques.



Abbreviated paper title 7

3.3 Comparison with State-of-the-Art Methods

In our experiments, we vary the labeled data percentages and compare the per-
formance with state-of-the-art (SOTA) methods, including MT [20], EM [22],
URPC [16], ICT [21], CCT [17], SSNet [24] and DCnet [5]. This study enables
us to evaluate the impact of varying amounts of labeled data on the model’s per-
formance. We present the results of all three datasets with different percentages
in Table 1. In this table, the proposed method surpasses all SOTA methods for
all three datasets by at least 5.6%, 16.6%, and 8.1% margin in the case of 13%,
30%, and 20% labeled data for ProstateX, CHAOS, and PROMISE12 datasets,
respectively. Further, when we experiment with a lesser percentage of the la-
beled data, then the proposed method outperformed the SOTA methods with
even greater extent compared to earlier, i.e., outperformed by at least 11.9%,
28.10%, and 24.3% margin in the case of 3%, 11%, and 8% labeled data for
ProstateX, CHAOS, and PROMISE12 datasets, respectively. In the scenario of
a smaller number of labeled data, the proposed method performs well, however,
most of the SOTA methods that utilize a shared network become even more
corrupted by unreliable pseudo-labels. Further, the qualitative assessment of the
outcomes of the proposed and (SOTA) methods across various label percentages
is visually presented in Fig. 2. Here, it can be observed that our method obtains
better predictions on all datasets against the SOTA methods. In both instances
of the PROMISE12, specifically with the three cases, it is evident that the other
competing methods struggle to perform accurate segmentation. Conversely, our
method demonstrates proficiency in successfully segmenting the data.

3.4 Ablation Studies

Impact of different losses. The proposed method integrates five distinct
losses: supervised loss (Lsup), worst-case-aware losses (Lwal and Lwau), and

Method Labeled%
ProstateX

Labeled%
Chaos

Labeled%
Promise12

DSC Hd95 ASSD DSC Hd95 ASSD DSC Hd95 ASSD

FS (UNet)

20(13%)

0.696 12.11 3.77

3(30%)

0.561 51.83 17.37

7(20%)

0.539 26.25 5.57
MT 0.717 11.47 3.71 0.582 44.29 17.58 0.610 36.44 6.27
EM 0.739 7.57 2.68 0.574 49.38 17.98 0.646 14.38 3.93
URPC 0.726 7.32 2.29 0.601 32.81 12.84 0.677 30.32 7.03
ICT 0.755 7.51 2.72 0.634 42.63 13.52 0.684 16.74 4.15
CCT 0.729 6.89 1.99 0.609 43.17 18.62 0.624 16.65 2.06
SSnet 0.760 6.16 1.44 0.666 38.52 12.02 0.730 34.24 10.98
DCNet 0.749 7.98 1.84 0.673 38.23 14.40 0.760 6.48 2.10
Ours 0.805 2.83 0.53 0.807 13.73 3.71 0.827 2.51 0.33

FS (UNet)

5(3%)

0.604 25.4 7.03

1(11%)

0.381 60.27 23.70

3(8%)

0.319 45.23 19.39
MT 0.633 25.8 6.23 0.357 59.63 23.66 0.313 40.86 15.28
EM 0.630 33.7 11.89 0.365 62.38 25.61 0.353 49.28 21.47
URPC 0.614 17.64 3.87 0.385 52.65 17.97 0.377 31.27 9.64
ICT 0.636 33.13 11.63 0.429 65.61 26.72 0.474 37.53 5.86
CCT 0.595 36.26 9.92 0.445 50.92 21.30 0.282 21.59 10.10
SSnet 0.676 15.99 4.22 0.494 42.98 18.18 0.499 25.46 11.87
DCNet 0.678 12.31 3.1 0.477 67.30 25.42 0.599 16.03 6.86
Ours 0.77 3.38 0.55 0.687 19.72 7.38 0.791 3.37 0.93

Table 1: Comparison of the proposed method with SOTA Med-SemSeg methods.
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strong-augmentation losses (Lws1 and Lws2). In our experimentation, we an-
alyze the impact of including or excluding each loss while keeping Lsup fixed
as the base loss. Results in Table 2 show that removing either of the strong
augmentations leads to a similar decline in model performance, as expected due
to their similar functions. Excluding worst-case-aware losses based on labeled
(Lwal) and unlabeled (Lwau) data is explored in the third and fourth rows.
The absence of Lu

wa has a more significant impact, primarily due to its role in
fine-tuning the encoder with unlabeled data to avoid the worst case scenario and
generate higher-quality features.

Methods
3 (8%) 7 (20%)

DSC↑ HD95↓ DSC↑ HD95↓
w/o L2

ws 0.776 3.95 0.801 3.10
w/o L1

ws 0.787 3.88 0.803 2.72
w/o Ll

wa 0.748 3.71 0.799 3.26
w/o Lu

wa 0.756 5.03 0.781 3.58
Ours 0.791 3.37 0.827 2.51

Table 2: Ablation on different losses on
PROMISE12. Fig. 3: Ablation on confidence

threshold values for PROMISE12.

3 (8%) 7 (20%)

DSC↑ HD95↓ DSC↑ HD95↓

w/o Dw 0.748 8.25 0.778 4.13
with Dw 0.791 3.37 0.827 2.51

Table 3: Ablation on PROMISE12
with and without Dw.

# Aug
3 (8%) 7 (20%)

DSC↑ HD95↓ DSC↑ HD95↓

2 0.791 3.37 0.83 2.51
3 0.803 2.95 0.814 2.74
4 0.792 3.16 0.823 2.50

Table 4: Ablation with different aug-
mentations on PROMISE12.

Impact of the worst-case-aware decoder. Table 3 highlights the significant
impact of excluding a worst-case-aware decoder on the proposed method’s per-
formance. Without this decoder, the encoder-generated features may result in
pseudo-labels that deviate from their true labels due to sub-optimal hyperplane.

Impact of threshold. By varying the threshold from 0.7 to 0.99 in Fig. 3, it
can be observed that the model consistently achieved the best performance at
0.95 for both the cases of 3 and 7 on the PROMISE12 dataset.

Effectiveness of multiple augmentations. We analyzed our method by in-
creasing the number of strong augmentations on decoder Ds and presented re-
sults in Table 4. Additional augmentations do not consistently improve perfor-
mance, reaching saturation where they no longer provide new information.
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4 Conclusion

In this paper, we recognized the inherent challenges associated with shared
network-based approaches and introduced a novel semi-supervised medical im-
age segmentation method to overcome these issues. The proposed method is
developed based on decoupled training combined with worst-case-aware learn-
ing. Experimental results on three medical imaging datasets demonstrated that
our approach attains state-of-the-art performance, highlighting its effectiveness
compared to existing methods.
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