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Abstract. Reconstructing 2D freehand Ultrasound (US) frames into
3D space without using a tracker has recently seen advances with deep
learning. Predicting good frame-to-frame rigid transformations is often
accepted as the learning objective, especially when the ground-truth la-
bels from spatial tracking devices are inherently rigid transformations.
Motivated by a) the observed nonrigid deformation due to soft tissue
motion during scanning, and b) the highly sensitive prediction of rigid
transformation, this study investigates the methods and their benefits
in predicting nonrigid transformations for reconstructing 3D US. We
propose a novel co-optimisation algorithm for simultaneously estimat-
ing rigid transformations among US frames, supervised by ground-truth
from a tracker, and a nonrigid deformation, optimised by a regularised
registration network. We show that these two objectives can be either
optimised using meta-learning or combined by weighting. A fast scat-
tered data interpolation is also developed for enabling frequent recon-
struction and registration of non-parallel US frames, during training.
With a new data set containing over 357,000 frames in 720 scans, ac-
quired from 60 subjects, the experiments demonstrate that, due to an
expanded thus easier-to-optimise solution space, the generalisation is im-
proved with the added deformation estimation, with respect to the rigid
ground-truth. The global pixel reconstruction error (assessing accumula-
tive prediction) is lowered from 18.48 to 16.51 mm, compared with base-
line rigid-transformation-predicting methods. Using manually identified
landmarks, the proposed co-optimisation also shows potentials in com-
pensating nonrigid tissue motion at inference, which is not measurable by
tracker-provided ground-truth. The code and data used in this paper are
made publicly available at https://github.com/QiLi111/NR-Rec-FUS.
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1 Introduction

With a variety of clinical applications including measurement assessment [13],
pre-operative registration [11] and surgical guidance [19], trackless freehand

https://github.com/QiLi111/NR-Rec-FUS
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US reconstruction has been proposed using both non-learning [4] and machine
learning-based approaches [29]. Recent learning-based methods vary in their net-
work architectures [25,33,28], training strategies [21,6,24], the use of prior knowl-
edge [22,23], input frames [26,33] and sequential modelling techniques [16,27].

To our knowledge, most existing approaches optimise rigid transformations
among US frames, which characterises the spatial movement - rotation and trans-
lation of the ultrasound probe during scanning. However, there is evidence that
probe pressure and patient movement cause soft-tissue undergoing nonrigid de-
formation [32]. Previous work compensated this nonrigid deformation using a
separate registration algorithm, after a rigid reconstruction [29], aligning the
same anatomical structures appeared in repeated scans [32].

However, validating such a nonrigid deformation modelling is challenging due
to a lack of general means to obtain soft-tissue-tracking, motion-included ground-
truth. In fact, the ground-truth data for supervision used in many learning-
based approaches are obtained from spatial tracking devices, such as optical and
electromagnetic trackers. They are rigid transformations that localise the rigid
probe rather than the deformable anatomical structures.

Withstanding the challenges in validating the estimated nonrigid deforma-
tion, we would like to explore other benefits for predicting nonrigid transforma-
tion in reconstructing US images. Two types of other applications that require
predicting rigid transformation are image registration and image data augmen-
tation/perturbation in training neural networks. Both have reported the difficul-
ties in esimating this constrained transformation. For example, predicting rigid
transformation is highly sensitive to initialisation and learning rate in weakly-
supervised registration [8] and spatial transformer network training [10], man-
dating careful hyperparameter tuning in these applications. Predicting a higher
degree-of-freedom, flexible nonrigid transformation provides an expanded solu-
tion space in optimising these transformation estimation methods, with respect
to either rigid or nonrigid ground-truth labels. This should improve the resulting
model generalisation, given limited data and compute resources in practice.

In this paper, we propose a co-optimisation deep-learning-based approach,
together with a “conventional” learnable rigid reconstruction, to estimate an
additional nonrigid deformation between US frames as well as within acquired
individual frames. Although the latter may not be plausibly compensate physical
deformation due to the fast single-frame imaging process, this should allow the
flexibility that benefits the numerical training process discussed above.

In summary, our contributions include: 1) a novel co-optimisation approach,
not only for compensating nonrigid soft tissue motion but also improve the net-
work training for better generalisation based on rigid ground-truth; 2) an open-
sourced PyTorch implementation of a practical interpolation method for scatter
ultrasound intensity values; 3) a new set of evaluation metrics for reconstruction
evaluation, at both global and local levels; and 4) one of the largest in vivo US
dataset for freehand US reconstruction, with recorded tracker information.



Nonrigid trackerless freehand ultrasound 3

2D US sequence
Recon-Network

Prediction
(scatter points)

Interpolation

ℒ"#$%&

ℒ'#(

2D space 3D space

Ground truth
(scatter points)

Prediction
(grid points)

Prediction
(warped grid points)

Ground truth
(grid points)

Tracked data
Interpolation

Def-Network

)*

)+

),

)-

).
)/

)0

)1

)234353

(a) (b)

Fig. 1. (a) Overview of the proposed method with rigid transformation and nonrigid
deformation prediction. (b) Contributions from support data to query data.

2 Method

An US sequence S consists of a number of US frames S = {Im},m = 1, 2, ...,M ,
acquired with increasing timestamps. For any pair of US frames Ii and Ij , a
spatial rigid transformation parameter vector tj←i, 1 ≤ i < j ≤ M denotes the
relative translation and rotation between the ith and jth frames. An US scan
containing several US sequences can be reconstructed in 3D once all the trans-
formations between each US frame and the reference frame can be calculated,
where the reference frame can be any frame in the scan. Fig. 1 (a) provides an
overview of the proposed method.

2.1 Rigid Reconstruction of Stacked 2D Frames

This section describes a rigid transformation estimation pipeline as pro-
posed in [29], using a deep neural network. As described in the sequence-
modelling methods [16], a convolutional neural network frecon with parame-
ters θrecon predicts rigid transformations with respect to the reference frame:
[(t̂

ref←1

1 )⊤, ..., (t̂
ref←M

M )⊤] = frecon(S; θrecon), where {t̂ref←m

m }Mm=1, is a set of
rigid transformation parameter vectors from all frames to the reference frame.
The 3D coordinates of nth pixel in mth frame P̂n

m, in reference frame coordinate
system, can be calculated using P̂n

m = T (Pn
I0
, t̂

ref←m

m ) . Pn
I0

is the point coordi-
nates in it’s tracker tool coordinate system, and can be obtained by using the
spatial calibration matrix [7] tcalib: Pn

I0
= T (Pn

img, tcalib), where Pn
img denotes

the coordinates in the pixel coordinate system [34]. T is a function applies the
t̂
ref←m

m -converted transformation on the points. While any frame in an US se-
quence can be regarded as the reference frame, we use the first frame as the
reference frame.

2.2 Interpolation for Efficient Resampling Non-parallel Frames

In this section, we first describe an efficient approach for interpolating from
scatter data to grid samples. US intensities sampled at regular grid are useful
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to efficiently compute similarity measures, deformation regularisation and im-
age warping, as commonly adopted in training registration networks. These are
repeatedly applied in the proposed co-optimisation, described in Sec. 2.3. Many
interpolation methods for estimating grid data from scatter data [9,1,14,3,31,5]
are computationally expensive. We introduce a simple and efficient interpolation,
with a time complexity of O(N) where N is number of pixels in a scan.

Denote intensity value at any point (x, y, z) as Vx,y,z, where the coordinate
system is defined such that the reconstructed voxel grids are positioned at integer
coordinates. Suppose there are N support data points at {(xi, yi, zi)}, the volume
reconstruction process is then given by

Vn1,n2,n3
=

ΣN
i=1W (xi − n1)W (yi − n2)W (zi − n3)Vxi,yi,zi

ΣN
i=1W (xi − n1)W (yi − n2)W (zi − n3)

(1)

where (n1, n2, n3) ∈ N3 is voxel index, and the weight function is given by

W (u) = 1|u|≤1(u) · (1− |u|) (2)

The indicator function in Eq. 2 suggests that any support data point within
one certain cube will only contribute to the eight vertices, or reversely, the value
at any query grid point can be calculated based on contributions of support
data within adjacent eight cubes. The computation of these contributions thus
can be done independently between all these cubes, before gathering all these
contributions for estimating the query vertex values, thus O(N)3.

2.3 Deformation Estimation using Co-Optimisation

A transformation-predicting network [2] fdef with parameters θdef takes the
interpolated rigid-transformed V̂ as input and generate a dense displacement
field (DDF) ϕ: ϕ = fdef (V̂ ; θdef ). The DDF then warps the rigid-reconstruction-
predicted volume to obtain the final prediction: Ṽ = V̂ ◦ ϕ. As illustrated in
Fig. 1 (a), the deformation estimation process is co-optimised together with
rigid reconstruction in Section 2.1.

The mean squared error, between predicted points coordinates and ground-
truth points coordinates, is used to supervise the rigid reconstruction: Lrecon =
1
M × 1

N ×
∑M

m=1

∑N
n=1||Pn

m − P̂n
m||22, where Pn

m and P̂n
m are the points coor-

dinates of ground-truth and prediction respectively, transformed from ground-
truth transformation tref←m and predicted transformation t̂

ref←m
. tref←m is

calculated using two tool-to-world transformations, T ref←m = (Tworld←ref )−1 ·
Tworld←m, T denoting transformation matrices, converted from parameter vec-
tors. The tool-to-world transformation is obtained from an optical tracker.

The loss function for training the deformation network is a typical regis-
tration loss [8], consists of bending energy and intensity similarity between the
ground-truth-reconstructed volume V and wrapped predicted volume Ṽ , to not
3 The interpolation process has an average speed of less than 1 ms over the dataset.
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only encourage a smooth deformation generated by the network, but also pro-
vides an opportunity to rectify any erroneous rigid reconstruction estimation:
Ldef (Ṽ , V, ϕ) = Lsim(Ṽ , V ) + Lsmooth(ϕ)

2.4 Training Strategy

In this section, we describe two training strategies that can be used in the pro-
posed pipeline, meta-learning and end-to-end training.

In the meta-learning strategy, network parameters involved in two processes
described in Sections 2.1 and 2.3 are separately optimised using a train-
ing data set Dtrain = {S, {tref←m

m }Mm=1} and a validation data set Dval =

{Ṽ , V }, respectively: θ̂def = argminθdef Lval
def (θdef ; θ̂recon,Dval), s.t. θ̂recon =

argminθrecon Ltrain
recon(θrecon;Dtrain). This bi-level optimisation strategy updates

the reconstruction and deformation networks, on separate training and validation
sets. This has widely been adopted in previous work, including those for this ap-
plication [15], to take into account the co-dependency between the optimisation
of the two networks and avoid sub-optimum solutions to both optimisations.

However, we have found that such trivial solutions are unlikely in this appli-
cation, perhaps due to the highly constrained deformation estimation. Therefore,
we propose to use a simple weighted single loss function to co-optimise the two
networks in an end-to-end training. The loss functions in Sections 2.1 and 2.3
are combined by weighting to train both network parameters θ̂recon and θ̂def :
θ̂recon, θ̂def = argminθrecon,θdef Ltrain

ete (θrecon, θdef ;Dtrain), where the end-to-end
loss Ltrain

ete used for supervising the co-optimisation process consists of two, with
a weight α calculated based on the magnitude of gradient of two parts [18]:
Ltrain
ete = Ltrain

recon + α× Ltrain
def .

2.5 Evaluation Metrics

Using rigid transformation, e.g. recorded by a spatial tracker, as ground-truth,
the weighting between translation and rotation components may be difficult
to interpret. In this paper, we design and propose four streamlined evaluation
metrics, on pixel and landmark reconstruction error, at local and global levels.

We first define two types of transformation-representing displacement vectors
- global displacement vectors and local displacement vectors, where the former
represents the displacement between each frame and the reference frame (i.e.,
the first frame in this work) and the latter denotes the displacement between
each frame and the immediately previous frame.

We then define two types of errors, consisting of 1) pixel reconstruction er-
ror, where the reconstruction error is the averaged Euclidean distance between
ground-truth- and predicted- reconstructed points locations, averaged over all
pixels of all but the reference frame in a scan; and 2) landmark reconstruction
error, where the reconstruction error is averaged over landmarks in a scan, with
the same measurement as pixel reconstruction error.

Thus, the four evaluation metrics used in this study are based on the two
types of displacement vectors and the two types of error measurements: 1) global
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pixel reconstruction error (GPE), reconstruction error on all pixels based on
global displacement vectors; 2) global landmark reconstruction error (GLE),
reconstruction error on landmarks based on global displacement vectors; 3) local
pixel reconstruction error (LPE), reconstruction error on all pixels based on
local displacement vectors; and 4) local landmark reconstruction error (LLE),
reconstruction error on landmarks based on local displacement vectors.

The proposed global and local levels of displacement vectors are capable of
reflecting the reconstruction error on both frame-level and accumulated error of
the algorithm [16]. In addition to the scenario where the performance on the
entire scan or adjacent frames is required, as measured by the above metrics,
other clinical applications may reconstruct a sequence of US frames using differ-
ent application-dependent intervals. Nonetheless, these four metrics should still
provide an estimate of performance range, for these applications with varying
trade-off between accumulated error and reference updating.

3 Experiments

Data Acquisition: The in vivo data 4 used in this paper were acquired from
60 volunteers, using Ultrasonix machine (BK, Europe) with a curvilinear probe
(4DC7-3/40), tracked by an NDI Polaris Vicra (Northern Digital Inc., Canada).
Other US imaging parameters are empirically configured based on the visual
quality of acquired US images. For example, the frequency was set at 6MHz
with a depth of 9 cm, and the dynamic range is 83 dB with an overall gain
of 48%. The US frame, with an image size of 640 × 480, was recorded at 20
frames per second (fps), without speckle reduction. The spatial calibration was
obtained using a pinhead-based method [7], and the temporal difference between
the optical tracker and imaging was calibrated using the Plus Toolkit [12].

Twelve scans were acquired for each subject, from both left and right arms,
with the US probe perpendicular of and parallel to the scanning direction, in
three different scanning trajectories - straight, c-shape and s-shape, in a distal-
to-proximal direction, resulting in 720 scans in total. The average number of
frames per scan is 500, equivalent to 200− 300 mm. The data set was split into
train, validation and test sets by a ratio of 3:1:1 on subject level, where scans
from the same subject cannot be in different sets.
Network Development and Implementation: EfficientNet (b1) [30] is
adopted as the backbone of the reconstruction network. A fully connected layer
is added at the end to output (M −1)×6 rigid transformation parameters, with
US sequence containing M frames as input. After calculating the points locations
in real-world space for pixels in the input US sequence and interpolating into an
US volume, the rigid-transformed volume is fed into an adapted VoxelMorph [2]
network, with an input channel of 1.
4 This study was performed in accordance with the ethical standards in the 1964 Dec-

laration of Helsinki and its later amendments or comparable ethical standards. Ap-
proval was granted by the Ethics Committee of local institution (UCL Department
of Medical Physics and Biomedical Engineering) on 20th Jan. 2023 [24055/001].
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The input sequence length is set to 100 for reported benchmark perfor-
mance [17]. The reconstructed volume has a resolution of 1 mm×1 mm×1 mm
with various sizes. Other hyper-parameters are less sensitive to reconstruction
and selected based on validation performance, including an Adam optimizer with
a learning rate of 10−4 and α = 103, on a single NVIDIA Quadro GV100 GPU.

For a fair comparison, we adapted two start-of-the-art (SOTA) methods, [29]
and [16], with the same hyper-parameters. We also compared with a model with
meta-training strategy, adapted from [20]. The same data split was used with a
ratio of 2:2:1, where the train and validation sets for rigid transformation and
nonrigid deformation network training, respectively. All models were trained for
at least 10,000 epochs until convergence, for up to 5 days.

4 Results

The performance improvement from our proposed method is summarised in Ta-
ble 1, as well as results from an ablation study with only rigid transformation
prediction (baseline) or meta-trained (Meta) models. As an surrogate of clini-
cally useful landmarks, four corner points in an image were used. Recon and Def
models come from our proposed approach, using the co-optimised rigid transfor-
mation and nonrigid transformation, respectively.

The reconstruction performance of the Recon and Def models both show
performance improvement in global reconstruction metrics (GPE and GLE),
compared with the baseline method (p-value = 0.001 and 0.003 for Def model,
based on paired t-test at a significance level at α = 0.05). The performance
of Meta model is poorer than those from both the end-to-end model and the
baseline, for metrics, demonstrating the effectiveness of proposed end-to-end
strategy. Most interestingly, although the global reconstruction metrics show

Table 1. Reconstruction performance using proposed four evaluation metrics, among
baseline, SOTA and our methods.

Models GPE (mm) GLE (mm) LPE (mm) LLE(mm)
Baseline 18.48± 10.30 19.70± 10.42 0.41±0.17 0.44±0.18

Reconmeta 21.29± 11.01 22.82± 11.15 3.59± 1.44 3.71± 1.45
Defmeta 20.89± 10.52 22.80± 11.13 – –

Recon (ours) 16.69± 7.79 18.15± 7.91 3.07± 0.99 3.38± 1.00
Def (ours) 16.51±7.76 17.91±7.85 – –

[29]cf 18.33± 7.77 20.19± 8.04 0.23±0.07 0.25±0.08
[16]cf 17.32± 8.12 18.64± 8.53 0.23± 0.08 0.25± 0.09

Baselinecf 16.44± 7.83 17.75± 8.08 0.39± 0.16 0.44± 0.18
Reconmeta_cf 18.46± 8.77 19.93± 8.95 3.29± 1.37 3.57± 1.48
Defmeta_cf 18.21± 8.37 19.94± 8.90 – –

Reconcf (ours) 15.26± 7.17 16.57± 7.43 2.71± 0.89 3.25± 0.97
Defcf (ours) 15.13±7.12 16.37±7.35 – –
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Fig. 2. (a): Reconstructed US scan volumes with ground-truth, proposed and SOTA
methods, illustrated with perpendicular c-shape, perpendicular straight, parallel s-
shape and parallel c-shape scans, from left to right. (b) Illustration of landmarks in
ground-truth- and prediction- reconstructed US scan volumes.

significant improvement, the local metrics has a reduced performance. This may
reflect a property of the added regularised deformation estimation, in which
the local perturbation (albeit may yield larger variance) is constrained to have a
smaller bias, thus reducing the long-term (or long distance in this case) expected
error.

The number of frames in an input US sequence is set at 100 in [16], with
transformation from 20th to 21th frames as an example. As the method in [16]
cannot predict the probe trajectory for all frames in a scan. For fair comparison,
we subsample the frames and use the same reference frame for the other methods
in Table 1, so that all methods predict the transformation for the same subset
of frames, i.e. the “common frames”, denoted as cf. When comparing on com-
mon frames between proposed and baseline models, the improvement was also
observed with p-value = 0.004 and 0.003 in GPE and GLE, using Def model,
also illustrated in Fig. 2 (a).

The proposed co-optimisation approach has potentials to rectify and improve
rigid reconstruction with ground-truth, by compensating nonrigid deformation.
Fig. 2 (b) shows two example slices on the same location, from ground-truth-
reconstructed volumes and DDF-predicted volumes, arrow indicating the scan-
ning direction. The landmarks (red crosses) in each slice represent the same
anatomical structure, and thus should be at the same 3D location when recon-
structed. It can be seen that the anatomical structure is broken in the ground-
truth-reconstructed volume, perhaps due to movement or tissue motion. The
distance between these landmarks decreased in the predicted volume, from an
average distance of 4.65 mm to 1.48 mm.
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5 Conclusion and Discussion

This work introduced deformation estimation into rigid reconstruction of free-
hand US. The experimental results, evaluated on a large data set, shows the
efficacy of the proposed algorithm. Examples of compensating nonrigid deforma-
tion are also discussed, to open up new avenue for improving this longstanding
challenge in ultrasound image computing.
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