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Abstract. Existing medical image registration algorithms rely on ei-
ther dataset-specific training or local texture-based features to align im-
ages. The former cannot be reliably implemented without large modality-
specific training datasets, while the latter lacks global semantics and
thus could be easily trapped at local minima. In this paper, we present
a training-free deformable image registration method, DINO-Reg, lever-
aging the general purpose image encoder for image feature extraction.
The DINOv2 encoder was trained using the ImageNet data containing
natural images, but the encoder’s ability to capture semantic informa-
tion is generalizable even to unseen domains. We present a training-free
deep learning-based deformable medical image registration framework
based on the DINOv2 encoder. With such semantically rich features,
our method can achieve accurate coarse-to-fine registration through sim-
ple feature pairing and conventional gradient descent optimization. We
conducted a series of experiments to understand the behavior and role
of such a general purpose image encoder in the application of image
registration. Our method shows state-of-the-art performance in multiple
registration datasets. To our knowledge, this is the first application of
general vision foundation models in medical image registration.
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1 Introduction

Deformable image registration non-linearly aligns a moving image to a reference
image [9]. The task is relevant in treatment planning, atlas-based segmentation,
and multimodal image fusion. Traditionally, deformable registration methods in-
volve an iterative optimization process, in which a quantified similarity metric
between the moving and reference images is maximized as the objective. Before
the deep learning era, the similarity metrics were based on handcrafted features
that attempted to bridge the modality gaps and sample differences between the
moving and reference image [11]. Since the creation of Voxelmorph [2], the lat-
est benchmarking for deformable image registration, many deep learning-based
methods [18] took a different path of directly predicting a displacement field
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given the self-learned hierarchical features extracted from the input moving and
reference images. However, these two types of methods each suffer from their
own limitation. Handcrafted features are often intensity and gradient-based. Al-
though these features are sensitive to corner points and contours, they lack global
semantics and therefore may be affected by local minima. Deep learning methods
that directly predict the displacement fields, on the other hand, lack explanabil-
ity and require manual segmentation at training time to overcome multi-modal
differences [2, 13,18].

To address the aforementioned drawbacks, a new group of methods use deep
neural networks for feature extraction, combined with a subsequent optimizer
that establishes the correspondence between the extracted features [8,16,17,21–
23]. Deep learning-based features contain rich semantics and are therefore in-
nately explainable. However, existing deep learning-based feature encoders for
medical image registration all require modality-specific training. SAMConvex
and SAME [16, 17], for example, are trained on and applied to CT data exclu-
sively. Similarly, ConvexAdam (nnUNet) [21] requires the segmentation frame-
work nnUNet to be trained on relevant modalities. Moreover, deep learning-
based encoders require huge datasets to be properly trained. Given the scarcity
of medical image data, such methods are not practical in most clinical settings.

Building upon the latest advancements in deep learning, the emergence of
foundation models in computer vision has introduced a paradigm shift in ap-
proaching complex visual tasks. Self-supervised vision foundation models like
DINOv2 [19] exemplify this evolution, offering pre-trained models that have
learned rich representations from vast unlabeled datasets, thereby mitigating
the need for task-specific data in initial training phases. Though pre-trained on
natural image datasets, these models excel in understanding global semantics
and local details across diverse visual domains, making them highly adaptable
for medical image analysis tasks, such as classification [1] and segmentation [25],
beyond their initial training scope. In this work, we will demonstrate that this
adaptability can also benefit the tasks of deformable image registration, where
capturing the nuanced differences and similarities between images is crucial.

We propose DINO-Reg, a novel image registration pipeline that utilizes DI-
NOv2 to encode medical image features with rich semantics for registration tasks
while requiring no fine-tuning. We present three major contributions to the field
of medical image analysis: (1) we pioneer the exploration of leveraging a self-
supervised learning model, namely DINOv2 which is fully trained on natural
images, for the task of feature extraction in medical image registration without
the need for fine-tuning; (2) we introduce a training-free framework specifically
designed to harness the full capacity of DINOv2 features for achieving accu-
rate 3D deformable medical image registration; (3) we conduct extensive experi-
ments to validate our proposed framework, benchmarking its performance across
a wide range of real-world public medical image datasets. Notably, our frame-
work exhibits exceptional capabilities in multimodal registration, highlighting
its readiness for broad clinical applications.
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Fig. 1. Overview of the proposed DINO-Reg framework.

2 Method

The overall framework of the proposed DINO-Reg is depicted in Fig. 1. In the
following sections, we will first introduce the DINOv2 model (Sec. 2.1) and how
we use this 2D model for 3D volumetric feature encoding (Sec. 2.2), then explain
the rigid (Sec. 2.3) and deformable registration framework (Sec. 2.4).

2.1 DINOv2 Encoder

DINOv2 (interpreted as self-DIstillation with NO labels, version 2) [3, 19] is a
state-of-the-art self-supervised learning framework that forms the cornerstone
of our approach. It leverages the principle of self-distillation to learn knowledge
from unlabeled images in a self-supervised manner. Specifically, DINOv2 has
a dual-network architecture comprising a teacher and a student network. The
two networks share identical network architectures (typically built on Vision
Transformers (ViTs) [5]) but are trained differently. Given an input image, the
student and teacher networks are fed with different augmentations of the image,
while constrained to extract consistent features. During the training stage, the
parameters in the student network are optimized through gradient descent al-
gorithms (such as stochastic gradient descent (SGD) and Adam [15]) while the
teacher network’s parameters are updated by the moving average of their coun-
terparts in the student network. The trained teacher network is often used as the
final product. Such a general purpose foundation model can serve as a powerful
feature extractor for downstream tasks such as classification and segmentation.

The DINOv2 model is pretrained on the ImageNet [4] dataset, which contains
1.3M unlabeled 2D natural images. The network utilizes a ViT-L/14 architecture
with an encoding dimension of 1,024. Each input image is first split into patches
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of 14×14(×3 channels) pixels, with an additional cls token to capture global
semantics, then fed through the ViT network to encode the 1024-D feature vec-
tors. Each patch feature vector contains the semantics of the original 14×14 pixel
patch in the context of the whole image. The cls token is conventionally used
for classification tasks due to its capability of representing the global semantics
of the whole image. In our study, we use the teacher network of a pretrained
DINOv2 model to extract robust and discriminative 1024-D features from both
moving and reference images.

2.2 Volumetric Feature Encoding

To encode 3D medical images with the 2D DINOv2 encoder, we select one of
the three orthogonal views (i.e., axial, coronal, and sagittal views) and encode
all the slices in that view. The axial view in most modalities shows the best
resolution and spatial consistency and is therefore our default choice. The shape
of DINOv2 input patches is fixed at 14×14, which means every 14×14 pixels are
encoded into a patch feature vector. Such pooling on resolution will significantly
limit the precision of image registration. We thus up-sample the input images
by s times to obtain features with finer resolution. The scaled input images are
represented with Iref s and Imov s. In this paper, we choose s = 5.3 due to GPU
memory limit (39GB).

Each 2D slice from the image will be encoded into a 3D feature map with
DINOv2, with the third dimension being the feature dimension. Stacking the
3D feature maps from all slices gives the 4D feature map of the entire volume.
After obtaining two 4D feature maps, we perform principal component analy-
sis (PCA) on all feature tokens to (1) reduce feature dimension (2) align the
moving and reference image feature into the same feature space. The principal
components aim to capture the variance of the original features. For the re-
sulting features to be meaningful for medical image registration, the principal
components must be describing the difference between anatomical structures,
such as organs and bones. If left unprocessed, most variance will occur between
the foreground and the background content. Therefore, we perform thresholding
on the original image intensity to obtain the foreground patch features. PCA
on foreground components is represented by PCAmask. Let the desired feature
length be k, the process is denoted as

Zref, Zmov = PCAmask([DINO(Iref s), DINO(Imov s)] , k), (1)

where k = 24 in this project. Due to the expensive time cost of encoding every
slice in the image volume, we only encode every three slices and interpolate the
feature maps in between. To further speed up the process, we swapped the full
PCA with low-rank PCA [7], which significantly reduces run time with almost
identical results.
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2.3 Slice-Match Rigid Registration with Classification-token
Features

Breaking down a deformable registration problem into coarse-to-fine steps is a
common approach for enhancing registration quality and smoothness [6, 18, 21].
The abdomen MR-CT dataset that we included in this work contains a large ini-
tial misalignment (initial DICE=0.376). In some cases, the corresponding organs
do not overlap at all, challenging iterative optimization algorithms like gradient
descent. Therefore, our framework starts with a coarse rigid registration based
on the cls token features encoded from each slice with DINOv2. Encoded to-
gether with the patch tokens, the cls tokens capture the global information of
each encoding slice. We also perform PCA to align the cls feature from the
moving and reference image to the same feature space. Let Cref and Cmov rep-
resent two sets of cls tokens, each with n encoding slices. We first compute the
distance between all possible pairs of slices between the two sets, resulting in a
n× n distance matrix. Then we isolate 10 pairs of feature vectors with the low-
est paired feature distance and compute the mean difference between their slice
indices. Through this process, we use the cls token to perform inter-modality
slice-matching which results in a coarse rigid registration. The mean distance is
then converted into a global rigid displacement field ϕglobal.

2.4 Gradient Descent Optimization with Patch-token Features

Leveraging the semantically rich patch features generated by DINOv2 effec-
tively mitigates concerns related to modality differences. As such, aligning the
modality-independent feature volumes resolves the multi-modal registration prob-
lem of the original images. We use the ADAM gradient descent optimizer to align
the two feature volumes, promoting both stability and inherent explainability.
Let Zref, Zmov represent the feature volumes and ϕ the displacement field, the
overall optimization objective function is written as

L(ϕ) = −Sim (Zref, Zmov ◦ ϕ) + λ||∇ϕ||22 (2)

where ||∇ϕ||22 is the regularization term that penalizes unsmooth deforma-
tions, λ is the regularization weight, and ϕ initializes at ϕglobal. For similarity
metric Sim(·, ·) we used either SSD (Sum of Squared Distance) or LCC (Local
Cross Correlation). For most datasets, the DINOv2 features are generalizable
across modalities thus SSD is the optimal solution. However, for the OncoReg
challenge dataset where the reference CBCT image contains a huge amount of
noise, we found LCC to be more suitable.

3 Experiments and Results

3.1 Abdomen MR-CT Dataset

To evaluate the cross-modal generalizability of our method, we conducted bench-
marks on the publicly available learn2reg abdomen MR-CT dataset [13]. This
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Table 1. Abdomen MR-CT results.

Method
Dice ↑

sdLogJ ↓ HD ↓
Mean Liver Spleen KidneyR KidneyL

Initial 0.376 0.510 0.372 0.306 0.296 - 16.1

Supervised Methods

Voxelmorph [2] 0.536 0.680 0.586 0.427 0.423 0.21 11.8
Attention-Reg [22] 0.545 0.716 0.548 0.471 0.412 0.54 12.0

Unsupervised Methods

Mutual Info (Affine) 0.394 0.524 0.398 0.293 0.350 - 15.9
Slice Match (Rigid) 0.467 0.623 0.445 0.381 0.402 - 11.8

NiftyReg [24] 0.486 - - - - - -
ConvexAdam(MIND) [21] 0.733 0.795 0.653 0.727 0.766 0.12 7.13

DNIO-Reg (Ours) 0.806 0.818 0.747 0.825 0.845 0.22 4.78

Reference (MR) Moving (CT) DINO-Reg ConvexAdam
(MIND)

Voxelmorph

Fig. 2. Qualitative registration result from abdomen MR-CT dataset. All images are
placed on the same slice as the reference image.

dataset comprises 8 pairs of corresponding MR-CT images and 90 unpaired
MR/CT images, each with manual segmentations of the liver, spleen, and kid-
ney. The dataset is characterized by large deformations between image pairs,
large modality gaps, and missing correspondence in some cases (image acquired
before and after ablation). Prior to analysis, all images were preprocessed to
dimensions of 192 × 160 × 192 with an isotropic spacing of 2mm. Additionally,
we normalized the intensity values of all images to a range of 0 to 1. For MR
images, we addressed extreme intensities by excluding those beyond the 97th
percentile. In the case of CT images, we applied a conventional abdomen inten-
sity windowing approach, setting the level to 50 and the width to 400.

Table 1 shows the benchmarking result for both supervised and unsupervised
methods on the MR-CT dataset. We evaluate registration performance based on
DICE, the standard deviation of the log Jacobian determinant of the displace-
ment field (sdLogJ), and 95% Hausdorff Distance (HD) in pixels. The sdLogJ
measures the smoothness and plausibility of deformable registrations, with lower
values being smoother. The supervised methods, Voxelmorph [2] and Attention-
Reg [22], are trained only with unpaired data in the training set as the paired
data is used for evaluation. No additional data augmentation was applied dur-
ing training. As table 1 shows, the proposed slice match method outperforms
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other affine registration methods, while the full proposed framework achieved
the best result among all methods. These results demonstrate that when a med-
ical image registration dataset lacks good training samples, it is hard to train
a reliable DL model. However, with DINOv2 features the proposed framework
can achieve state-of-the-art performance without any fine-tuning on medical im-
age. The handcrafted MIND features [11] with ConvexAdam optimization cuts
close in performance, but its instability is shown by the 3 pixels (6mm) higher
(p-value < 0.01 in paired t-test) 95% Hausdorff Distance value and significantly
lower mean DICE (p-value < 0.01 in paired t-test). In Fig. 2, we show a quali-
tative registration result of several benchmarked methods. In this sample (case
2 in the public dataset), the reference and moving image are initialized with
a large displacement along the axial view. While most methods fail to capture
such long-range displacement, the proposed framework remains robust.

3.2 OncoReg Challenge Dataset

In this section, we showcase the outcomes achieved by our method in the On-
coReg challenge. The OncoReg challenge is categorized as a Type 3 challenge,
signifying that the evaluation is conducted on a dataset that remains undisclosed
to participants prior to the assessment. We submitted our method as Docker
packages and the challenge organizers carried out the benchmarking process at
their end without disclosing the test data. An auxiliary dataset, referred to as
ThoraxCBCT, was made available to the participants, featuring a similar data
structure. Both datasets focus on the intra-patient registration task, aligning pre-
treatment fan-beam CT (FBCT) images with low-dose cone beam CT (CBCT)
scans. The CBCT images are characterized by a reduced field of view and a
significantly lower signal-to-noise ratio compared to FBCT images. The Thorax-
CBCT dataset contains 20 pairs of images for training and 6 pairs for validation.
Manual segmentations and landmarks are only available for the validation set,
thus little supervised learning could have been applied. We preprocessed every
image with the conventional lung CT windowing approach, setting the level to
-600 and the width to 1500.

The OncoReg challenge results are shown in table 2. The organizers use a
combination of multiple metrics, including TRE (Target Registration Error),
TRE30 (TRE of landmarks with 30 percentile largest initial error), DICE, and
sdLogJ, to rank the submissions. The coefficient of each evaluation metric to-
wards the final rank was determined by the challenge organizers. In this table,
the result shown is an ensemble version of the proposed method with MIND
optimization result [11] to strengthen the alignment of organ contours. On this
unseen dataset, our methods achieved a good balance between the TRE and
DICE metrics, while still maintaining deformation smoothness (lowest sdLogJ).

3.3 Ablation Studies

In this section, we show the ablation study result by removing several com-
ponents from our framework. Detailed quantitative results are in table 3. The
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Table 2. OncoReg challenge results. The score column is calculated by the challenge
organizers to represent the performance of each method holistically.

Team TRE↓ TRE30↓ DICE sdLogJ Score↑ Runtime

DINO-Reg (ours) 3.509 6.656 0.622 0.039 0.742 < 60s
Voxelmorph++ [10] 3.715 6.621 0.636 0.068 0.717 < 60s
ConvexAdam [21] 3.467 6.339 0.610 0.059 0.686 (< 5s)
FourierNet [14] 4.769 8.107 0.619 0.095 0.54 > 300s
deedsBCV [12] 7.736 10.618 0.579 0.150 0.48 < 15s
NiftyReg [20] 7.467 10.485 0.382 0.053 0.38 < 60s
Initial 6.067 10.121 0.442 - - -

Table 3. Ablation study on abdomen MR-CT dataset

Method DICE LogJacDetStd HD

DINO-Reg 0.806± 0.09 0.22 4.78± 6.6
w/o slice match 0.783± 0.15 0.24 5.62± 6.6
w/o masking 0.789± 0.13 0.21 5.79± 7.8
w/o up-sampling 0.612± 0.18 0.05 9.3± 7.8
up-sampling=3 0.794± 0.10 0.21 5.5± 7.9

most significant impact on performance comes from not performing up-sampling
of the input images, which is expected since the resolution of the features would
be significantly compromised. However, as shown in the last row, an up-sampling
factor of 3 comes very close in performance, while requiring much less memory
( 15GB). Feature masking during PCA and the slice matching rigid registration
also has incremental effects on the performance.

4 Conclusion

In this paper, we present a training-free algorithm, DINO-Reg, for deformable
medical image registration. The registration result is robust on cross-modality
registration tasks and unseen datasets, outperforming supervised methods when
the training set is low in quality. The success of DINO-Reg highlights the poten-
tial for general vision foundation models to contribute significantly to medical
image analysis, where the quantity and quality of training data hinder the de-
velopment and clinical deployment of deep learning-based tools.

Disclosure of Interests. The authors have no competing interests to declare that

are relevant to the content of this article.
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