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Abstract. The Magnetic Resonance Fingerprinting (MRF) approach
aims to estimate multiple MR or physiological parameters simultane-
ously with a single fast acquisition sequence. Most of the MRF studies
proposed so far have used simple MR sequence types to measure relax-
ation times (T1, T2). In that case, deep learning algorithms have been
successfully used to speed up the reconstruction process. In theory, the
MRF concept could be used with a variety of other MR sequence types
and should be able to provide more information about the tissue mi-
crostructures. Yet, increasing the complexity of the numerical models
often leads to prohibited simulation times, and estimating multiple pa-
rameters from one sequence implies new dictionary dimensions whose
sizes become too large for standard computers and DL architectures. In
this paper, we propose to analyze the MRF signal coming from a complex
balanced Steady-State Free Precession (bSSFP) type sequence to simul-
taneously estimate relaxometry maps (T1, T2), Field maps (B1, B0) as
well as microvascular properties such as the local Cerebral Blood Volume
(CBV) or the averaged vessel Radius (R). To bypass the curse of dimen-
sionality, we propose an efficient way to simulate the MR signal com-
ing from numerical voxels containing realistic microvascular networks as
well as a Bidirectional Long Short-Term Memory network that replaces
the matching process. On top of standard MRF maps, our results on 3
human volunteers suggest that our approach can quickly produce high-
quality quantitative maps of microvascular parameters that are otherwise
obtained using longer dedicated sequences and intravenous injection of
a contrast agent. This approach could be used for the management of
multiple pathologies and could be tuned to provide other types of mi-
crostructural information.
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1 Introduction

The Magnetic Resonance Fingerprinting approach (MRF, [18]) aims to estimate
multiple MR or physiological parameters with a single fast acquisition sequence.
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The MRF process involves fast undersampled acquisitions with time-varying
parameters that produce temporal signal evolutions (or fingerprints) in every
voxel. These in vivo fingerprints are then compared to a large number of sim-
ulated signals obtained using combinations of a priori tissue parameters and
stored in a “dictionary” database. The values of the parameters corresponding
to the closest simulated signals or “match” are then assigned to the associated
voxels, producing multiple quantitative maps simultaneously.

Most of the MRF studies proposed so far have used simple MR sequence
types, such as spoiled gradient echo, for their fingerprints and have focused on
the measurements of the transverse and longitudinal relaxation times T1 and
T2 as well as the transmit field B1 [16,17]. Even with this small number of
dimensions in the dictionary, multiple strategies had to be proposed to reduce
the long matching times initially obtained using direct dot product analysis (>
hours) as well as the large sizes of the dictionaries (> 10Gb). This includes data
compression with SVD decomposition [19], fast group matching [3], and various
deep learning architectures for the matching step including dense structures [4],
convolutional [6,13] and recurrent [14,2] networks or auto-encoders [8].

In theory, the MRF concept could be used with a variety of other MR se-
quence types and should be able to provide more information about the tissue
microstructures. As long as the fingerprints are made sensitive to the parame-
ters of interest, are different from each other and the simulations are realistic
enough to capture the physical processes of interest. However, increasing the
complexity of numerical models often leads to prohibited simulation times. Sim-
ilarly, estimating multiple parameters from one sequence implies new dictionary
dimensions whose sizes become too large for standard computers and that even
standard deep learning architectures have not been able to handle well.

In this paper, we propose to analyze the MRF signal coming from a complex
balance Steady-state free precession (bSSFP, [20]) type sequence that is known to
be sensitive to various biological parameters including vascular microstructures.
Our goal is to simultaneously estimate relaxometry maps (T1, T2), Field maps
(B1, B0 or corresponding frequency shift δf) as well as microvascular properties
such as the local cerebral blood volume (CBV) or the averaged vessel Radius (R).
These latter vascular properties are of interest for the management of multiple
pathologies including stroke or cancer but are usually acquired with much longer
dedicated MR sequences and require intravenous injection of a contrast agent.

Contributions. In order to bypass the curse of dimensionality, we propose:

1. An efficient way to simulate MR signals coming from numerical voxels con-
taining realistic microvascular networks. Inspired by Wang et al. [23], we first
estimate the frequency (δf) distributions inside voxels and convolve standard
MRF dictionaries along this dimension. In this way, only small dictionaries
have to be stored and fast vascular simulations can be made on demand.

2. A Bidirectional Long Short-Term Memory (BiLSTM, [9]) network was used
as a surrogate of the matching process. These types of networks have shown
promise in modeling sequential data, making them suitable for analyzing
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MRF temporal sequences [21]. The bidirectionality is used to improve the
sensitivity to all parts of the fingerprints and provide accurate measurements
for the 6 parameters of interest T1, T2, B1, δf , CBV and R. The network is
trained with on-fly simulations to avoid storing the entire dictionary.

2 Material and Methods

This section describes the material and methods used for our experiments. The
associated code can be found at https://github.com/nifm-gin/MARVEL.

2.1 Towards Vascular Dictionaries of Signals

The signal response of a voxel to a bSSFP-type sequence is impacted by its
underlying microvascular properties. We explain how to extend standard dictio-
naries based on Bloch equations to take into account these intravoxel structures.

Base Dictionary Generation using Bloch Equations. The Bloch equa-
tions given below describe the evolution of the nuclear magnetization vector
M = (Mx,My,Mz) as a function of the longitudinal and transverse relaxation
times T1 and T2, the surrounding magnetic field vector B0 = (Bx, By, Bz) with
corresponding frequency shifts δf and the gyromagnetic ratio γ:

dMx

dt
= γ

(
MyBz −MzBy

)
− Mx

T2
,

dMy

dt
= γ

(
MzBx −MxBz

)
− My

T2
,

dMz
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(
MxBy −MyBx

)
− Mz −M0

T1
,

where M0 is the steady-state nuclear magnetization. Numerical simulations of
those equations allow to compute a 4-dimensional dictionary, called Dicobase,
with signal evolutions associated to a set of provided tissue parameters T1, T2,
B1 and δf . To generate this dictionary, we used Python combined with a Matlab
code derived from a reference Bloch simulator [11] for standard relaxometry
sequences. Simulations were performed using a main magnetic field of 3T.

Vascular Dictionary Generation. In vivo, there is usually more than one δf
value inside the voxels. This comes from the interaction of the different magnetic
susceptibilities in the subvoxel microstructures (such as blood vessels) with the
main magnetic field of the scanner. By applying a segmentation pipeline on
public datasets of healthy mice (due to the unavailability of corresponding human
datasets) whole-brain microscopy, we obtain a binary representation of vascular
networks with realistic geometries. Then, as illustrated in Figure 1, we compute
(using a Fourier transform) the magnetic field spatial distributions produced by
those networks inside each 3D voxel (see Delphin et al. [5] for details), and in
turn provide realistic distributions of δf values. These distributions rely on the
CBV and R values characterizing the vascular network.

https://github.com/nifm-gin/MARVEL
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Fig. 1. Simulations of an intra-voxel frequency distribution.
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Fig. 2. Creation of a 6-dimensional vascular MRF dictionary using a 4-dimensional
base dictionary and frequency distributions.

In order to generate a vascular dictionary, composed of signal evolutions that
take into account the influence of CBV and R, we convolve the Bloch dictionary
Dicobase with δf distributions estimated from our 3D vascular structures. The
convolution process is illustrated in Figure 2. Eventually, a dictionary Dicovascular
with 6 tissue parameters T1, T2, B1, δf , CBV and R can be built (but it is also
possible to compute the vascular dimensions without having to store the full
6-dimensional dictionary). Note that a similar process has been used by Wang
et al. [23] to estimate the T ∗

2 relaxation times using Lorentzian δf distributions.

2.2 Standard Dictionary Matching Process

As a reference, a dictionary-matching process was used to provide quantitative
parameter maps. Each voxel signal of the acquisition is matched to the signal
of Dicovascular that maximizes the inner product, allowing for retrieval of the
associated tissue parameters. This standard matching approach faces several
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limits when considering a large number of parameters, mainly due to dictionary
storage constraints, computation time issues, and the small number of values
per parameter that can be simulated. For our reconstructions, a base dictionary
Dicobase containing 43,000 signals was computed for a range of 10 T1 values
(from 0.2 to 3.5 s), 10 T2 values (7 values from 10 to 200ms and for 200, 400 and
600ms), 5 B1 values (from 0.7 to 1.2) and frequency offset δf values (from -50 to
49Hz with an increment of 1Hz), keeping only signals for which T1 > T2. Then, a
vascular dictionary Dicovascular was generated by convolving the 43,000 entries of
Dicobase with 300 δf distributions coming from vascular structures obtained from
3D microscopy imaging (see [5]). To ensure fully defined distributions during
the convolution process, only δf values between -30 and 30Hz were used in the
expanded dictionary. Even with a small number of vascular δf distributions, the
final dictionary contains 7,344,400 entries and the file size is already 29.4Gb.

2.3 Deep Learning Reconstruction

We introduce a deep learning reconstruction framework in order to overcome the
limits of dictionary-matching in high dimensions and allow the computation of
quantitative parameter maps in a reasonable time for clinical applications.

A Bidirectional Recurrent Network. Observing that unidirectional LSTM
structures [14,2] did not seem suited for the difficulty of the task (as shown
in Figure 3 for LSTM and Reversed LSTM, and discussed in Section 4), we
decided to use a Bidirectional LSTM (BiLSTM) architecture which extends the
capabilities of the network while preserving its simplicity: the bidirectional layer
is followed by dense layers (additional details about the structure and parameters
of the network are provided in the supplementary materials). We implemented
the network in Python, using the TensorFlow library.

Training & Dictionary Generation. As explained in Section 2.2, training a
network to simultaneously estimate 6 tissue parameters requires a large number
of microvascular distributions to learn the diversity of brain vascularization. To
overcome the storage difficulties, we use a fixed base dictionary (T1, T2, B1, δf)
and compute, at regular training steps, a batched vascular dictionary of the same
size by convolving each signal of the base dictionary with a random microvascular
frequency δf distribution. We detail the training procedure below.

We generate the base dictionary with 1,000,000 signals associated to 10,000
triplets (T1, T2, B1), pseudo-randomly picked into [0.2 s, 3.5 s] × [0.01 s, 0.6 s] ×
[0.7, 1.2] using a Sobol distribution, and to 100 δf values (from -50 to 49Hz with
an increment of 1Hz). The increasing number of signals in this dictionary used
for convolution, compared to the matching case (with 43,000 entries), is made
possible by the online update of the vascular expanded dictionary, which prevents
the dictionary size from exploding when adding microvascular parameters.

Before training, we compute (as detailed in Section 2.1) a set of 28,000 fre-
quency distributions of voxels with different vascular parameters CBV and R.
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Then, during training and at every 5 epochs, we generate a new training batched
dictionary by randomly associating, to each set of parameters T1, T2, B1, δf , a
couple (CBV,R) of vascular parameters among our 28,000 distributions, using
the convolution procedure explained in the previous section. We only keep for
training signals with δf values between -30 and 30Hz (as in the matching case),
leading to a total of 600,000 signals. Finally, to increase the robustness of the
learning against noisy acquisitions, we add a centered Gaussian noise to signals
of the vascular dictionary during training, with variance randomly chosen such
that the resulting SNR is uniform in the range [1, 20]. This choice of a wide SNR
range is motivated by previous studies [1] and the aim of considering acquisitions
with significant SNR variations (see next section).

2.4 MRI in vivo acquisition

In vivo acquisitions were realized on 3 healthy volunteers with a Philips 3T
Achieva dStream MRI at the IRMaGe facility (MAP-IRMaGe protocol). The
proposed MRF sequence was based on an IR-bSSFP acquisition. 260 repeti-
tions were used (TR=21ms), with Flip Angle (FA) linearly increasing from
7° to 70° as suggested in [10], and a quadratic phase cycle of 10°. To com-
pare the robustness of the model against under-sampling noise, one acquisition
was performed using Cartesian sampling (matrix size: 256× 256× 1; voxel size:
0.78×0.78×3.00mm3) with a scan time of 12 minutes per slice, and the two other
acquisitions were performed using a spiral trajectory (matrix size: 192×192×3;
voxel size: 1.04× 1.04× 3.00mm3) with 12 acquired shots and a scan time of 2
minutes per slice. The spiral trajectory enables faster scan times and is hence
essential for the clinical use of MRF sequences. Yet, the k-space undersampling
scheme used in spiral scanning induces significant noise on the acquired signals.
A sequence with the same parameters scheme, except the application of a spoil-
ing gradient in the slice selection direction, was also acquired in one volunteer
(Spoil sequence). This sequence was used as a reference to show the ability of
simple networks to reconstruct 3-dimensional MRF maps.

3 Results

Quantitative parameter maps obtained in one volunteer using Cartesian acqui-
sition are given in Figure 3. Relaxometry maps (T1, T2, B1) obtained with the
standard spoil sequence and reconstructed with the LSTM network are of high
quality, suggesting that the network reconstruction works for low dimensional
MRF acquisitions. Results from standard dictionary-matching on the bSSFP
sequence (reconstruction time 2223 s) show noisier maps but also provide fre-
quency and microvascular maps with the right contrasts and global values in the
expected ranges. This is not the case with the LSTM and the Reversed LSTM
networks3 reconstructions. Our BiLSTM network is yet able to provide high-
quality maps for all the parameters (reconstruction time 3.5 s). In particular,

3 For those networks, we replaced the bidirectional layer of our network by a unidirec-
tional LSTM. The direction of input signals was inverted for the Reversed LSTM.
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Fig. 3. Parameter maps of the Cartesian acquisitions obtained with the reconstruction
methods studied in this paper. (Note that the slice position slightly differs between the
Spoil and bSSFP acquisitions.)

Table 1. Mean and standard deviation of T1, T2, CBV and R reconstructed values in
white matter (WM), grey matter (GM) and sagittal sinus (manually drawn ROIs) in
the slice of the Cartesian bSSFP sequence shown in Figure 3. Best values compared to
literature [24,12,7,22,5,15] are in blue.

Parameter Tissue LSTM Rev. LSTM BiLSTM Matching Literature

T1 (ms)
WM 538 ± 121 1119 ± 177 823 ± 55 931 ± 46 ∼ 690 − 1100
GM 674 ± 202 1440 ± 261 1320 ± 339 1381 ± 380 ∼ 1286 − 1393

T2 (ms)
WM 0.5 ± 6 37 ± 15 54 ± 5 50 ± 13 ∼ 56 − 80
GM 8 ± 22 53 ± 21 69 ± 21 80 ± 70 ∼ 78 − 117

CBV (%)
WM 19.8 ± 4.5 40.0 ± 0.4 2.0 ± 0.9 2.0 ± 5.0 ∼ 1.7 − 3.6
GM 22.2 ± 5.3 39.8 ± 1.2 3.9 ± 3.4 1.49 ± 1.9 ∼ 3 − 8

Sag. sinus 19.5 ± 8.5 37.3 ± 4.2 21.2 ± 7.3 28.2 ± 8.8

R (µm)
WM 8.2 ± 0.8 10.0 ± 0.0 5.6 ± 0.3 4.2 ± 2.3 6.8 ± 0.3
GM 8.5 ± 0.9 10.0 ± 0.0 5.8 ± 0.5 5.4 ± 2.2 7.3 ± 0.3

Sag. sinus 7.8 ± 1.3 10.0 ± 0.2 8.8 ± 1.5 10.1 ± 2.2
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Fig. 4. Parameter maps of one slice of a volunteer of the bSSFP spiral acquisition ob-
tained with dictionary-matching and our BiLSTM network, and associated histograms.

the CBV and R maps are different from the relaxometry maps, with high values
where large vessels are expected. This can also be observed in Table 1, where
values reconstructed by the BiLSTM are closer to results obtained in previous
literature studies4 and give a grey matter (GM) / white matter (WM) ratio of
CBV values close to 2. Parametric maps obtained in one slice of the second vol-
unteer using the spiral acquisition are presented in Figure 4. Standard matching
and BiLSTM reconstruction are compared and suggest that the network can
adapt to a different type of space sampling and SNR. Histograms of values are
also provided to highlight the discretized versus continuous value distributions
between the two approaches. BiLSTM results for all slices of the 2 volunteers
using the spiral acquisition are given in the supplementary material.

4 Conclusion and Perspectives

In this study, we showed the possibility of quickly analyzing MRF data con-
taining multiple dimensions including microvascular properties. This was done
by combining fast and light realistic simulations with the use of Bidirectional
LSTMs. First results on healthy volunteers are encouraging especially for the
CBV maps that show a nice contrast between WM, GM and blood vessels, and
have similar values to those usually obtained with Gadolinium injections or TEP.
Quantitative validation of our method against standard Dynamic Susceptibility
Contrast MRI analysis in healthy volunteers is limited due to the required injec-
tion of contrast agent. However, further analyses and comparisons with reference
methods should be conducted in patients to validate the whole approach.

Although the GM/WM ratio of 2 obtained by our BiLSTM network in the
CBV maps is expected in the human brain, it seems that the network reconstruc-
tion tends to smooth the parameter maps. This effect might be minimized by
optimizing the MRF acquisition sequence with automatic procedures to improve
the initial sensitivity to the (vascular) parameters. The numerical simulations
could also be improved by using input frequency distributions computed from
more realistic and diverse vascular vessel geometries, and by adding other sources

4 CBV and R values from the literature were obtained using contrast agent injection.
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of magnetic susceptibility to our model, such as myelin fiber structures. In ad-
dition, other solutions can be foreseen to enhance the reconstruction pipeline.
The network structure could be further improved to handle longer fingerprints
and the training step could contain additional undersampling noise in order to
improve reconstruction from spiral acquisitions. Temporal compression meth-
ods such as Singular Value Decomposition [19] could also be applied to the
MRF dictionary before training to help the LSTM networks capture long-term
dependencies more effectively. Our approach has potential applications in the
management of several pathologies including stroke and tumors. It might also
be possible to extend the method to the measurement of other microstructural
parameters such as brain oxygenation.
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Disclosure of Interest. The authors have no competing interests to declare that are

relevant to the content of this article.

References

1. Barbieri, M., Brizi, L., Giampieri, E., Solera, F., Manners, D.N., Castellani, G.,
Testa, C., Remondini, D.: A deep learning approach for magnetic resonance fin-
gerprinting: Scaling capabilities and good training practices investigated by sim-
ulations. Physica Medica 89, 80–92 (2021). https://doi.org/10.1016/j.ejmp.2021.
07.013

2. Cabini, R.F., Barzaghi, L., Cicolari, D., Arosio, P., Carrazza, S., Figini, S., Filibian,
M., Gazzano, A., Krause, R., Mariani, M., Peviani, M., Pichiecchio, A., Pizzagalli,
D.U., Lascialfari, A.: Fast Deep Learning Reconstruction Techniques for Preclinical
Magnetic Resonance Fingerprinting. NMR in Biomedicine 37(1), e5028 (2024).
https://doi.org/10.1002/nbm.5028

3. Cauley, S.F., Setsompop, K., Ma, D., Jiang, Y., Ye, H., Adalsteinsson, E., Griswold,
M.A., Wald, L.L.: Fast Group Matching for MR Fingerprinting Reconstruction.
Magnetic Resonance in Medicine 74(2), 523–528 (2015). https://doi.org/10.1002/
mrm.25439

4. Cohen, O., Zhu, B., Rosen, M.S.: MR fingerprinting Deep RecOnstruction NEtwork
(DRONE). Magnetic Resonance in Medicine 80(3), 885–894 (2018). https://doi.
org/10.1002/mrm.27198

5. Delphin, A., Boux, F., Brossard, C., Coudert, T., Warnking, J.M., Lemasson, B.,
Barbier, E.L., Christen, T.: Enhancing MR Vascular Fingerprinting through Real-
istic Microvascular Geometries (2024), https://hal.science/hal-04107446, preprint

6. Fang, Z., Chen, Y., Lin, W., Shen, D.: Quantification of Relaxation Times in MR
Fingerprinting using Deep Learning. Proceedings of the International Society for
Magnetic Resonance in Medicine ... Scientific Meeting and Exhibition. Interna-
tional Society for Magnetic Resonance in Medicine. Scientific Meeting and Exhi-
bition 25, 3307 (2017)

https://doi.org/10.1016/j.ejmp.2021.07.013
https://doi.org/10.1016/j.ejmp.2021.07.013
https://doi.org/10.1016/j.ejmp.2021.07.013
https://doi.org/10.1016/j.ejmp.2021.07.013
https://doi.org/10.1002/nbm.5028
https://doi.org/10.1002/nbm.5028
https://doi.org/10.1002/mrm.25439
https://doi.org/10.1002/mrm.25439
https://doi.org/10.1002/mrm.25439
https://doi.org/10.1002/mrm.25439
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1002/mrm.27198
https://doi.org/10.1002/mrm.27198
https://hal.science/hal-04107446


10 A. Barrier, T. Coudert et al.

7. Gelman, N., Ewing, J.R., Gorell, J.M., Spickler, E.M., Solomon, E.G.: Interregional
Variation of Longitudinal Relaxation Rates in Human Brain at 3.0 T: Relation to
Estimated Iron and Water Contents. Magnetic Resonance in Medicine 45(1), 71–
79 (2001). https://doi.org/10.1002/1522-2594(200101)45:1⟨71::AID-MRM1011⟩3.
0.CO;2-2

8. Golbabaee, M., Buonincontri, G., Pirkl, C.M., Menzel, M.I., Menze, B.H., Davies,
M., Gómez, P.A.: Compressive MRI Quantification using Convex Spatiotemporal
Priors and Deep Encoder-Decoder Networks. Medical Image Analysis 69, 101945
(2021). https://doi.org/10.1016/j.media.2020.101945

9. Graves, A., Schmidhuber, J.: Framewise Phoneme Classification with Bidirectional
LSTM and other Neural Network Architectures. Neural Networks 18(5), 602–610
(2005). https://doi.org/10.1016/j.neunet.2005.06.042
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