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Abstract. In medical imaging, accurately representing facial features is
crucial for applications such as radiation-free medical visualizations and
treatment simulations. We aim to predict skull shapes from 3D facial
scans with high accuracy, prioritizing simplicity for seamless integration
into automated pipelines. Our method trains an MLP network on PCA
coefficients using data from registered skin- and skull-mesh pairs ob-
tained from CBCT scans, which is then used to infer the skull shape for
a given skin surface. By incorporating teeth positions as additional prior
information extracted from intraoral scans, we further improve the accu-
racy of the model, outperforming previous work. We showcase a clinical
application of our work, where the inferred skull information is used in
an FEM model to compute the outcome of an orthodontic treatment.

Keywords: Machine Learning · Digital Patient · Skull Estimation ·
Mesh Processing.

1 Introduction

With the increasing integration of 3D face and intraoral scans into medical work-
flows, the generation of comprehensive patient-specific head models has become
more accessible. However, in many applications, the avoidance of CBCT imag-
ing due to ionizing radiation leaves a critical gap in obtaining accurate skull
information. Yet, incorporating detailed skull data into digital twin models is
indispensable for a more complete modeling of anatomical structures and en-
abling accurate physics-based treatment simulations. Consequently, the demand
for more advanced head models is apparent [1, 5, 6, 17], as these models can
comprehensively capture both external soft tissue layers and intricate interior
anatomical structures. Recent innovations underscore the effectiveness of head
models in augmenting realism in medical simulations [21, 18, 8, 20, 10] as well as
in diverse fields like entertainment animation systems [3, 19, 7, 11, 22].

This paper tackles the challenge of incorporating interior geometry into face
scan models. Our objective, akin to prior works OSSO [9] and SCULPTOR [16],
is to predict skull shapes from 3D facial surfaces. OSSO uses linear regression
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for a coarse estimation of the skeleton, resulting in a generalized skull shape.
SCULPTOR, based on the FLAME model [12], offers more accurate head mod-
eling using medical data but lacks a non-linear component to model the skin-skull
relationship

In [14], the authors present a non-parametric skull shape estimation method,
using an intricate procedure that follows steps for registration, deformation, and
refinement. While the method relies on multiple manual intervention steps, our
work puts emphasis on components that make the method suited for automation.
In [15], the authors presented a neural network to regress skin-skull-offset vectors,
using skin mesh surface points and other skin mesh features as input. The result
is a coarse, water-tight skull mesh, which naturally lacks skull surface details. In
contrast, we aim at capturing such intricate details, making it better suited for
simulation and visualization for medical applications.

Our method employs a Multilayer Perceptron (MLP) network trained on
Principal Component Analysis (PCA) coefficients from CBCT-registered skin-
and skull-mesh pairs. This network accurately infers skull shapes from a given
skin surface, outperforming recent methods [9, 16]. Additionally, it can incorpo-
rate intraoral scans to improve accuracy in the mouth area. Our results indicate
the method’s potential for various applications, such as providing radiation-free
bone surfaces for medical visualizations and simulating treatment outcomes. Our
key contributions are as follows:

– An MLP-based deep learning solution for 3D skull inference based on medical
data that outperforms previous work in terms of accuracy and simplicity.

– A method that includes a strong prior derived from teeth data to further
improve accuracy.

– A demonstration of our method’s applicability in a medical simulation.

2 Method

Our learning-based method aims to infer skull geometry from a standard face
scan, as shown in Figure 1. It uses an MLP operating in a PCA space constructed
from a CBCT head dataset. The following sections cover the preprocessing, the
MLP-based learning and inference, and the incorporation of a teeth prior.

2.1 Preprocessing for Training

Using a PCA model allows us to work in a reduced dimensional space, generating
smooth, natural skin and skull shapes by adjusting its parameter vector. To
create this PCA space for registered meshes, we must first process the CBCT
scans.

We begin by extracting the skin and skull surfaces using the Blue Sky Plan
software [2]. Next, we use the landmarking software Wrap3D [4] to manually
place point correspondences between the extracted surfaces and our template
skin or skull mesh. To handle missing patches on the extracted surfaces, we
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Fig. 1. Overview of our pipeline: Our model is trained on CBCT-extracted skin and
skull meshes and uses a face scan mesh as input during inference. The face scan is first
registered to a template skin mesh, and a template skull is incorporated. This merged
mesh is then projected into a PCA space derived from CBCT skin and skull mesh
pairs. The resulting PCA parameter vector is fed into an MLP network, which predicts
a correction vector to adjust the input vector. This corrected vector is projected back
into data space to generate the final output skull mesh. If an intraoral scan is available,
it is used as a teeth prior to enhance accuracy.

exclude certain polygons on the template mesh before registering the meshes with
the NICP algorithm. The final registered meshes share the Wrap3D[4] template
topology and consist of Nskin vertices for the skin mesh and Nskull vertices for
the skull mesh.

To construct the PCA space of the skin and skull mesh pairs, the respective
mesh vertex matrices are vectorized. Each data point consists of a one dimen-
sional vector with length M = (Nskin∗3)+(Nskull∗3), giving us a data matrix D
of size Ntrain ×M . D is then used to construct a PCA space that is spanned by
the first 15 principle components of data matrix D. Consequently, a projection
of a data point d ∈ R1×M into this PCA space is described by P (d) ∈ R1×15.

At inference time, only the registered face scan is available. Our PCA model,
which includes both skin and skull meshes, can be directly fitted to the face
scan to produce a matching skull. However, fitting the PCA parameter vector
to the skin mesh alone leaves too many possibilities for valid skull shapes, often
resulting in a skull mesh that doesn’t resemble the true skull. To address this, we
included an MLP in the pipeline, leveraging its non-linearity for a more accurate
modeling of the skull and skin shape relationship.

To provide the MLP with a consistent input format as our initial guess for
our PCA parameter vector, we prepare our second data matrix Dm as follows.
Let d ∈ R1×M be a data point from D. Then, d can be separated into two vectors
df ∈ R1×(Nskin∗3) and ds ∈ R1×(Nskull∗3), representing the skin and skull parts
of d. Consequently, let ms ∈ R(Nskull)∗3 be the generic Wrap3D [4]template skull
aligned to the skull part of the mean vector of D. This generic skull vector is
used to construct the data point vector dm ∈ R1×M , by replacing the original
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skull part of d, which is ds, with ms. We repeat this replacement procedure for
all of the d ∈ D, resulting in the same generic skull as an initial guess for each
data point, constructing our second data matrix Dm ∈ RNtrain×M .

2.2 MLP-based Learning

To facilitate learning, we employ dimensionality reduction by projecting the two
data matrices into the PCA space to obtain P (D), P (Dm) ∈ RNtrain×15. Then,
we train a 4-layer MLP that takes as input P (dm) ∈ P (Dm) and outputs y,
the prediction of Pres(d, dm) = P (d) − P (dm), where P (d) ∈ P (D). Next, y
can be used to construct z = P (dm) + y, which in turn is the prediction for
P (d). Then, we can use the predicted PCA parameter vector z to consequently
generate the predicted mesh vector d′ = P−1(z) ∈ RM×1 reshaped into the mesh
S′ ∈ R(Nskin+Nskull)×3.

For training we use the the following loss

L(Sf , S
′
f , Ss, S

′
s) = λmLm(Sf , S

′
f ) + λmsLm(Ss, S

′
s), (1)

where Sf ∈ RNskin×3 and Ss ∈ RNskull×3 are the ground truth skin and
skull mesh, and S′

f ∈ RNskin×3 and S′
s ∈ RNskull×3 are the skin and skull mesh

extracted from the predicted mesh vector d′. The mesh loss Lm enforces the
predicted PCA parameters to project as closely as possible to the ground truth.
It is defined as the average L2 loss between the respective meshes.

2.3 Skull Inference from Face Scan

Our method is trained with medical CBCT data, but uses 3D facial scans from
a smartphone at inference time. Advanced capturing systems can also generate
the input facial scans. We register the face scan to our template skin mesh,
similar to the procedure in subsection 2.1. After obtaining the registered skin
mesh from the face scan, we vectorize the registered skin mesh into the vector
df . The generic skull vector ms is then concatenated to df , producing the vector
dm ∈ R1×M .

We then use our PCA projection to generate x = P (dm), which is used as an
input to our trained MLP to generate y = MLP (x). Consequently, the predicted
residual parameter vector y is added to x to obtain the prediction z = x+ y for
P (d). We then project z from the PCA space into the data space, producing the
mesh vector d′ reshaped into the mesh S′. Discarding the skin part, we recover
the skull prediction for the initial scan. This method is referred to as AutoSkull.

2.4 Adding a Teeth Prior

When there is additional intraoral (IO) scan data is available, AutoSkull can
be adapted to improve the skull prediction accuracy in the mouth area. This
adaptation is called AutoSkull+.
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First, we align the IO scans to an open-mouth pose of the input face scan,
utilizing a proprietary technology 4. Next, we automatically process every IO
scan mesh by identifying the gum lines, calculating the per-tooth centers at the
level of these lines and then fitting a spline curve through these centers. The
resulting spline curves serve as an approximation for the teeth-bone boundary
to increase the accuracy of the skull estimation in these regions.

To integrate the teeth prior into our model, we sample each of the two spline
curves with 3000 sample points, vectorize them and concatenate the data point
d from our original model with the teeth-point vector of size 6000 ∗ 3. As can
be seen in Figure 1, this additional modality affects data-related aspects of the
pipeline, such as the input and the PCA space.

3 Evaluation and Results

In the following paragraphs, we explain our evaluation setup, detail our compar-
ison experiments, provide an ablation study, and conclude with an application
example.

3.1 Evaluation Setup

We use two datasets to construct our training and test sets for evaluation: The
main dataset (1) consists of 91 CBCT and IO scan pairs. The second dataset
(2) includes 8 paired CBCT, facial and IO scans. Both CBCT imaging protocols
enforced a neutral pose and closed bite.

As evaluation, we conduct three experiments with AutoSkull and AutoSkull+:
(A) Using (1), we train the model on 81 registered CBCT data points, and test
on the other 10 registered samples. (B) We train the model on all 91 registered
samples from dataset (1) and test on dataset (2), using the registered CBCT
skin meshes as input. (C) We train the model on all 91 registered samples from
dataset (1) and test on dataset (2), using the registered face scans as input. The
registered CBCT meshes are manually aligned with corresponding face scans to
obtain ground truth skulls for (C).

As our model is trained with registered meshes, we measure performance by
comparing the predicted mesh to the registered mesh, not the extracted CBCT
mesh counterpart.

The MLP has two hidden layers of size 410, both with residual connections
and ReLU activation functions. Training spanned 40 epochs for AutoSkull and
80 epochs for AutoSkull+, with a learning rate of 0.001. These configurations
were empirically determined as most effective, as depicted in the supplementary
material.

Training was performed on a Laptop with an Intel Core i7-9750H CPU at
2.60 GHz, taking about 28 minutes on average. Inference on the same device
takes around 2.3 seconds per instance.
4 provided by our industrial collaborator, Align Technology
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3.2 Comparisons

We compare our method with the recent methods OSSO [9] and SCULPTOR
[16]. Additionally, we apply probabilistic PCA (PPCA), as seen in [13], by treat-
ing the unknown skulls as missing values of a dataset. Each compared method
underwent fine-tuning tailored for our comparative analysis, optimized to pre-
dict a skull suitable for our dataset. The publicly available skeleton-inference
code base of OSSO takes as input a posed SMPL / STAR body mesh and infers
the respective posed skeleton. To apply the OSSO skeleton-inference to our test
set, we first register each face of our test set to the face part of the SMPL /
STAR body template mesh. The resulting full-body mesh serves as input and
the head part of the predicted skeleton mesh is used as the final skull prediction.
SCULPTOR provides publicly accessible code for their parametric model; how-
ever, the shared version is less expressive than the one used in their evaluations.
Using the shared version, we implemented our own SCULPTOR skull estimation
pipeline, optimizing the model parameters for a given skin mesh to obtain skull
estimations for our test set.

We evaluate the error in the face and mouth areas of the skull, as detailed in
the supplementary material. Table 1 shows that both AutoSkull and AutoSkull+
outperform previous methods, with AutoSkull+ providing the best performance,
particularly in aligning the mouth area, as illustrated in Figure 2. In experiment
(C), a performance reduction is observed due to slight differences between optical
facial scans and CBCT skin surfaces. The ground truth skulls for (C) were taken
from CBCT scans and manually aligned to face scans.

As shown in Figure 3, different methods use different template skulls for their
predictions. The detailed surface structures in OSSO skull predictions do not ap-
pear due to a more accurate prediction but due to their presence in the template
skull. The supplementary material demonstrates that the OSSO method shows
less shape variability in predicted skulls compared to our approach, especially
noticeable in the estimated jaw shapes.

Table 1. Average errors in mm, measured on face and mouth areas of skulls for different
methods: (A) with CBCT test set coming from the same data source as train data, (B)
with alternative CBCT test set, and (C) using the face scans of the alternative test set

Evaluation Osso Sculptor PPCA AutoSkull AutoSkull+
(A)Face 3.77 ± 0.79 2.96 ± 0.55 1.55 ± 0.33 1.46 ± 0.26 1.44 ± 0.27
(B)Face 3.65 ± 0.72 2.99 ± 0.35 1.86 ± 0.33 1.73 ± 0.27 1.56 ± 0.18
(C)Face 3.47 ± 0.65 2.54 ± 0.20 2.86 ± 0.57 2.33 ± 0.15 2.09 ± 0.24
(A)Mouth 4.49 ± 2.19 3.52 ± 0.99 1.71 ± 0.39 1.59 ± 0.40 1.45 ± 0.47
(B)Mouth 4.69 ± 2.00 3.52 ± 1.18 1.86 ± 0.42 1.74 ± 0.27 1.36 ± 0.18
(C)Mouth 4.66 ± 2.38 2.64 ± 0.81 3.32 ± 1.3 2.22 ± 0.27 2.12 ± 0.28
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Fig. 2. We extract the gum boundaries (red) from the IO scan teeth mesh, which are
very close to the bones (left). Including this teeth prior (AutoSkull+) results in higher
accuracy near the mouth region (right).

Fig. 3. A sample of the CBCT test set predictions with ground truth skull in blue and
our prediction overlaid in white. We present a comparison of skull shape predictions
by OSSO, Sculptor, PPCA, and our methods AutoSkull and AutoSkull+.

3.3 Ablation study

Number of PCA components We report the PCA reconstruction errors on the
face area for different numbers of PCA components (#components, error in
mm): (5, 1.48); (15, 1.25); (25, 1.17); (35, 1.14); (45, 1.08); (55, 1.03); (65, 0.97);
(75, 0.95). We opted for 15 (covering 84% of the total explained variance), which
strikes a good balance between accuracy and simplicity.

Losses We evaluate the losses used during training with AutoSkull+ and report
mean errors in mm for face and mouth areas on the CBCT test set (B), calculated
using vertex-to-closest-point Euclidean distance distance between the ground
truth mesh and predicted mesh. We report the numbers as (lambdas, mean er-
ror face, mean error mouth): (λm=1.0 and λms=0.0, 1.56, 1.36); (λm=0.0 and
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λms=1.0, 1.63, 1.53); (λm=0.5 and λms=0.5, 1.58, 1.42). The differences among
the loss variations are minimal, particularly when assessed in the mouth area.

Registration quality The average Euclidean distances from registered mesh ver-
tices to the nearest points on the corresponding extracted CBCT iso-surface from
dataset (1) are 0.2mm for the skin and 0.67mm for the skull face area. Compar-
ing the test set (B) predictions with their extracted CBCT surface counterparts
as ground truth yields an average mean error of 1.49mm.

3.4 Application Example

We assess our method in a clinical context, focusing on an orthodontic treatment.
As shown in Figure 4, using a simple face scan, we automatically estimate a
skull shape to generate a simulation mesh for the head. This mesh is then fed to
a finite element method (FEM) simulator to compute the treatment outcome.
Comparing the resulting face mesh to the simulation using a CBCT-derived
skull shape, our estimated skull results in an average error of only 0.14 mm
(vertex-to-closest-point distances) within the soft tissue region of interest.

Fig. 4. From a face scan input, we estimate the person-specific skull shape and generate
a simulation mesh. We then simulate an orthodontic treatment with FEM, leading to
only 0.14mm average error on the deformed soft tissue compared to the simulation
result that uses skull shape obtained from a CBCT scan.

4 Discussion and Conclusion

We have presented a learning-based method to reliably infer skull geometry
from 3D facial surface input, which can be seamlessly integrated into automated
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pipelines due to its straightforward foundational components. The primary limi-
tation of our method is its requirement for a neutral expression input face mesh,
lacking expression or pose invariance. Additionally, the generalization capability
of AutoSkull is limited by the dataset on which it was trained. Integrating opti-
cal facial scans into training along with CBCT data could enhance the method’s
domain adaptation for facial scan inputs.

Future work involves enhancing our method with a fully non-linear model
and exploring distinct latent spaces for the face, bones, soft tissue, and teeth.
This separation can increase the variability of the spaces independently by in-
corporating unpaired data. Furthermore, establishing relationships between the
spaces could help with generalization and decoupling shape and expression.

In conclusion, our approach facilitates the creation of digital patient twin
models without the reliance on CBCT. This presents a radiation-free solution
for generating comprehensive patient models and computing treatment outcomes
through simulation, particularly in scenarios where the accuracy requirements
are not stringent and the CBCT might not be imperative. Moreover, our models
can offer flexibility by accommodating situations where only partial CBCT data
is accessible, enabling the generation of complete and detailed patient models in
instances of limited imaging data. This versatility positions our methodology to
contribute significantly to advancements in personalized patient care.
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