
TinyU-Net: Lighter yet Better U-Net with
Cascaded Multi-Receptive Fields

Junren Chen1 , Rui Chen2, Wei Wang3, Junlong Cheng1, Lei Zhang1(�), and
Liangyin Chen1(�)

1 College of Computer Science, Sichuan University, Chengdu, Sichuan, China
{zhanglei, chenliangyin}@scu.edu.cn

2 Department of Electronic Engineering, Tsinghua University, Beijing, China
3 School of Automation, Chengdu University of Information Technology, Chengdu,

Sichuan, China

Abstract. The lightweight models for automatic medical image segmen-
tation have the potential to advance health equity, particularly in limited-
resource settings. Nevertheless, their reduced parameters and compu-
tational complexity compared to state-of-the-art methods often result
in inadequate feature representation, leading to suboptimal segmenta-
tion performance. To this end, we propose a Cascade Multi-Receptive
Fields (CMRF) module and develop a lighter yet better U-Net based on
CMRF, named TinyU-Net, comprising only 0.48M parameters. Specifi-
cally, the CMRF module leverages redundant information across multiple
channels in the feature map to explore diverse receptive fields by a cost-
friendly cascading strategy, improving feature representation while main-
taining the lightweightness of the model, thus enhancing performance.
Testing CMRF-based TinyU-Net on cost-effective medical image seg-
mentation datasets demonstrates superior performance with significantly
fewer parameters and computational complexity compared to state-of-
the-art methods. For instance, in the lesion segmentation of the ISIC2018
dataset, TinyU-Net is 52×, 3×, and 194× fewer parameters, respectively,
while being +3.90%, +3.65%, and +1.05% higher IoU score than baseline
U-Net, lightweight UNeXt, and high-performance TransUNet, respec-
tively. Notably, the CMRF module exhibits adaptability, easily integrat-
ing into other networks. Experimental results suggest that TinyU-Net,
with its outstanding performance, holds the potential to be implemented
in limited-resource settings, thereby contributing to health equity. The
code is available at https://github.com/ChenJunren-Lab/TinyU-Net.
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1 Introduction

Achieving health equity necessitates advancements in medical technology along-
side concerted efforts to ensure their accessibility across diverse healthcare set-
tings [1]. In the field of medical image segmentation, where sophisticated models
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like vision transformer (ViT) [2] and U-Net family [3,4,5] have shown remarkable
efficacy, their impressive performance is accompanied by a heavy burden of pa-
rameters and computations, constraining its broad adoption and implementation
in limited-resource settings [6]. Hence, studies that focus solely on enhancing seg-
mentation performance, without considering resource constraints, fail to ensure
equitable access to the benefits of automatic medical image segmentation across
all healthcare facilities. This issue is particularly critical in underserved regions
with restricted access to computational resources, ultimately leading to health
inequities. Indeed, lightweight models offer a solution that aligns with health
equity, ensuring affordable universal accessibility.

Recently, lightweight medical image segmentation has garnered significant at-
tention due to its applicability in limited-resource settings. UNeXt [7] catalyzed
this interest by multilayer perceptron (MLP) and depthwise separable convolu-
tion (DSC) [8,9], resulting in parameters and floating-point operations (FLOPs)
suitable for limited-resource settings. ConvUNeXt [10] further advanced U-Net
by integrating lightweight attention mechanisms and utilizing large convolu-
tional kernels, reducing parameters while maintaining segmentation superiority.
U-Lite [11], employing axial depthwise convolutions, expands the model’s recep-
tive field while easing computational burdens to suit limited-resource settings.
CMUNeXt [12] harnesses large kernels and inverted bottleneck designs to seam-
lessly integrate distant spatial and location information, effectively extracting
global contextual cues for swift and precise diagnostic assistance in real-world
scenarios. FBSNet [13], featuring a dual-branch structure, captures extensive
receptive field information and establishes local pixel dependencies to preserve
details, facilitating real-time semantic segmentation deployable on edge devices.
Despite offering promising avenues for addressing global healthcare disparities,
existing lightweight networks often struggle to surpass current state-of-the-art
models, owing to the reduced parameter counts and computational complex-
ity resulting in inadequate feature representation. Therefore, there is a greedy
demand for a model that is lighter yet better in medical image segmentation.

How to chase high-performance while being lightweight? Modern
feature extraction modules based on multi-receptive fields enrich the complexity
of the model, exemplified by techniques like feature pyramid [14] and parallel
multi-group convolution [15], which have demonstrated notable efficacy in en-
hancing performance, thereby serving as a source of motivation. Nevertheless,
the implementation of these multi-receptive field techniques inevitably escalates
costs, rendering the models less lightweight. This is detrimental to clinical prac-
tice in limited-resource settings, ultimately challenging global health equity [16].
To comprehensively address this challenge, we propose a novel Cascade Multi-
Receptive Fields (CMRF) module. Specifically, the CMRF module utilizes the
redundant information across multiple channels in the feature map, exploring
diverse receptive fields in the feature map through a cost-friendly cascading
strategy. It enhances feature representation by fusing information from various
receptive fields in a layer while maintaining a lightweight design, thereby im-
proving performance. Further, building upon the CMRF module, we have con-



TinyU-Net 3

structed the lighter yet better TinyU-Net, a novel lightweight U-shaped network
for medical image segmentation.
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Fig. 1. Details of the CMRF (left part of the figure) and the architecture of the TinyU-
Net (right part of the figure). The CMRF module fuses information from various recep-
tive fields using a cost-friendly cascading strategy, aiming to uphold lightweight design
while improving feature representation. The building modules, rooted in CMRF, con-
stitute the architecture of our TinyU-Net, which adopts the U-shaped framework.

In summary, our contributions are: (1) Proposing the CMRF module, im-
proving feature representation by fusing information from multi-receptive fields
in a layer through a cost-friendly cascading strategy. (2) When applying the pro-
posed CMRF to other models, segmentation performance consistently improves
while reducing both parameters and computational complexity. (3) Proposing
TinyU-Net, boasting a mere 0.48M parameters and small computational com-
plexity, yet yielding exceptional performance for medical image segmentation.

2 Method

Fig. 1 illustrates the specifics of our proposed CMRF and outlines the architec-
ture of TinyU-Net with the CMRF serving as its foundational building module.
We begin by introducing CMRF (see Section 2.1), a novel lightweight module
facilitating feature representation from multi-receptive fields through a cost-
friendly cascading strategy. Next, we introduce TinyU-Net (see Section 2.2), a
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tiny variant of U-Net based on CMRF designed to optimize lightweight medical
image segmentation models without intricate embellishments.

2.1 CMRF

As shown in the left part of Fig. 1, our proposed CMRF module adeptly incor-
porates depthwise convolution (DWConv) and pointwise convolution (PWConv)
from DSC [8,9]. To make the CMRF module lightweight, we reduced the channels
in the intermediate layers compared to the number of input and output chan-
nels [17,18]. Given the input feature map denoted as Xin ∈ RCin×H×W , we utilize
the PWConv-BN-Act block to mine the feature information and yield feature
map X ′ ∈ R

Cout
N ×H×W , while regulating the output channel count. Where BN

and Act represent batch normalization and non-linear activation, respectively.
In this study, GELU [19] is adopted as the activation function. Furthermore, in-
spired by lightweight modules such as Ghost [20] and PConv [21] to further opti-
mize the CMRF module for lighter weight, we utilize the information redundancy
across multiple channels from the feature map in a cost-efficient way. Specifi-
cally, starting from the leftmost channel of the feature map X ′ ∈ R

Cout
N ×H×W

and numbering from 1 to Cout

N , the feature map X ′ ∈ R
Cout

N ×H×W is divided
into X ′

odd ∈ R
Cout
2N ×H×W and X ′

even ∈ R
Cout
2N ×H×W based on the parity of chan-

nel numbers. These are subjected to linear operations and cascade operations,
respectively. On the one hand, to enhance the richness of feature information,
we fusion X ′

odd ∈ R
Cout
2N ×H×W with X ′

even ∈ R
Cout
2N ×H×W through element-

wise addition to yield X ′′
linear ∈ R

Cout
2N ×H×W , drawing inspiration from the

mixup [22,23] data augmentation. On the other hand, we employ a cascade
strategy on X ′

even ∈ R
Cout
2N ×H×W , leveraging DWConv-BN block as a compo-

nent, of which there are N−1, to mining information with various receptive field,
while retaining the output of each DWConv-BN block. Where DWConv repre-
sents depthwise convolution with a convolutional kernel size of 3, where both the
input and output channel quantities are Cout

2N . To utilize the results of the afore-
mentioned process and enrich feature representation, we concatenate the feature
maps along the channel direction, yielding the feature map X ′′′ ∈ R

Cout
2 ×H×W .

Furthermore, considering the need for a lightweight design in the CMRF mod-
ule, to fully and efficiently leverage the information from channels with various
receptive field information, we further append a PWConv-BN-Act block to yield
a feature map Xout ∈ RCout×H×W to facilitate the fusion of information from
multi-receptive fields while regulating the output channel count.

2.2 TinyU-Net

As shown in the right part of Fig. 1, given our novel CMRF as the crucial build-
ing module, we further propose TinyU-Net, a tiny variant of the U-Net family
to make medical image segmentation lighter and better. We aim to keep the
CNN-based architecture as simple as possible, without bells and whistles, to
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make it cost-friendly in general. Similar to the U-Net framework, the TinyU-Net
architecture comprises four CMRF-Downsampling blocks functioning as the en-
coder, four Upsampling-concat-CMRF blocks serving as the decoder, four skip
connections, and a PWConv acting as the category adjuster, collectively con-
stituting a U-shaped network. Note that the Downsampling operator employs a
max-pooling in which size and stride are both set to two, for downsampling by
2×. The Upsampling operator uses the bicubic interpolation algorithm for up-
sampling by 2×. Considering lightweight design principles, we utilize a PWConv
to adjust the output channels to accommodate the segmentation categories.

In this study, we referred to the output outcomes of individual layers in
the standard U-Net. Subsequently, we determined the channel numbers for the
output feature maps of the CMRF as C1 = 64, C2 = 128, C3 = 256, and C4 =
512 from the topmost to the bottommost layer. To summarize, when provided
with the input Yin ∈ RC0×H×W , the corresponding output is denoted as Yout ∈
RC×H×W for TinyU-Net. Where

{
C0, C,H,W, H

2 ,
W
2 , H

4 ,
W
4 , H

8 ,
W
8

}
∈ N+ and

C represents the number of categories of segmentation including background.

3 Experiments

Datasets. Given our goal of promoting and applying our work in medical institu-
tions with limited resources, such as community hospitals, we chose ISIC2018 [24]
and NCP [25] datasets for verifying our methods. The ISIC2018 dataset consists
of images with skin disease lesions. Our experiments were conducted using the
officially partitioned data, which consists of 2594 training images, 100 validation
images, and 1000 test images. The NCP lesion segmentation dataset comprises
CT slice images from the China Consortium of Chest CT Image Investigation
(CC-CCII). A total of 750 CT slices from 150 COVID-19 patients were manually
segmented into background (BG), lung field (LF), ground-glass opacity (GGO),
and consolidation (CL). In the experiments, we divided the data into training,
validation, and test sets with a ratio of 6:2:2.
Implementation details. We implemented the TinyU-Net model on an NVIDIA
4090 GPU with 24 GB of memory using the PyTorch framework. We utilized
the Adam optimizer with a learning rate of 1 × 10−4 and a first-order momen-
tum decay rate of 0.9. Additionally, we employed a cosine annealing learning
rate scheduler with a minimum learning rate set to 1 × 10−6. The models were
trained using the sum of cross entropy and dice loss as the final loss function.
The input image resolution was set to 256×256 (i.e., H = W = 256), and train-
ing was stopped after 300 iterations. We conducted experiments on the same
dataset using the provided source code by the authors, applying data augmen-
tation strategies and ceasing data augmentation after 180 epochs. Furthermore,
in our experiments, we designated the initial input channel as 3 (i.e., C0 = 3).
Notably, in our experiments, configuring the number of DWConv-BN blocks to
7 (i.e., N = 8) yields optimal performance (see Section 4 for ablation study).
Performance comparison. We defined whether a model was lightweight based
on the parameter count, with 5M parameters as the threshold. We compared our
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TinyU-Net with both currently popular lightweight models [7,10,11,12,13] and
the non-lightweight state-of-the-art models [3,4,5,26,27]. Note that we evaluated
segmentation performance using metrics such as Intersection over Union (IoU)
and Dice. Furthermore, we provided comparisons of models in the number of
parameters (in M) and FLOPs (in G) which can represent computational com-
plexity.
Ablation study. To further validate the effectiveness of the CMRF module,
we directly replaced the feature extraction blocks of the encoder and decoder in
models [12,26]. Additionally, we performed ablation experiments to evaluate the
impact of varying the number of DWConv-BN blocks.

TinyU-Net

TransUNet Swin-Unet DeepLabV3+ SegNet U-Net

FBSNetCMUNeXt U-Lite ConvUNeXt UNeXt

Input with GroundTruth

TinyU-Net

TransUNet Swin-Unet DeepLabV3+ SegNet U-Net

FBSNetCMUNeXt U-Lite ConvUNeXt UNeXt

Input with GroundTruth

Fig. 2. Comparative qualitative results on ISIC2018 (top two rows) and NCP (bottom
two rows) datasets.

4 Results and Discussion

Comparative quantitative results. Tables 1 and 2 display the experimental
findings concerning the ISIC2018 and NCP datasets, respectively. Our proposed
TinyU-Net achieved the highest mean IoU (mIoU) and mean Dice (mDice) scores
with the fewest parameters. Specifically, TinyU-Net demonstrates a noteworthy
improvement compare to baseline U-Net, achieving a +2.80% increase in mIoU
scores on the ISIC2018 dataset and a +1.49% enhancement in mIoU scores
on the NCP dataset. This achievement is realized by utilizing parameters that
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Table 1. Comparative quantitative results on ISIC2018 dataset.

Model Params FLOPs IoU (%) Dice (%)
(M) (G) Mean Lesion BG Mean Lesion BG

U-Net [3] 24.89 112.91 82.69 76.14 89.23 90.38 86.45 94.31
SegNet [26] 29.44 80.34 83.64 77.53 89.74 91.06 87.35 94.59
DeepLabV3+ [27] 5.81 13.22 83.43 77.35 89.50 91.02 87.23 94.46
TransUNet [4] 93.23 64.48 84.66 78.99 90.32 91.75 88.26 94.91
Swin-Unet [5] 27.15 15.46 83.39 77.28 89.49 90.98 87.19 94.45
UNeXt [7] 1.47 1.15 82.85 76.39 89.31 90.50 86.61 94.35
ConvUNeXt [10] 3.51 14.51 83.96 77.95 89.96 91.24 87.61 94.71
U-Lite [11] 0.88 1.52 84.13 78.12 90.13 91.29 87.72 94.81
CMUNeXt [12] 3.15 14.84 84.62 78.82 90.42 91.62 88.16 94.97
FBSNet [13] 0.60 5.76 84.03 78.12 89.93 91.35 87.72 94.70
TinyU-Net 0.48 3.33 85.49 80.04 90.94 92.18 88.91 95.25

Table 2. Comparative quantitative results on NCP dataset. GL, GGO, LF, and BG
denote consolidation, ground-glass opacity, lung field, and background, respectively.

Model Params FLOPs IoU (%) Dice (%)
(M) (G) Mean CL GGO LF BG Mean CL GGO LF BG

U-Net [3] 24.89 112.93 78.78 65.21 56.68 93.65 99.58 86.95 78.94 72.35 96.72 99.79
SegNet [26] 29.45 80.49 76.04 63.40 48.44 92.75 99.57 84.73 77.60 65.27 96.24 99.79
DeepLabV3+ [27] 5.81 13.22 77.28 64.73 52.41 92.52 99.46 85.80 78.59 68.78 96.11 99.73
TransUNet [4] 93.23 64.51 79.50 65.60 58.98 93.82 99.58 87.50 79.22 74.19 96.81 99.79
Swin-Unet [5] 27.15 15.46 72.98 54.74 46.33 91.48 99.35 82.32 70.75 63.32 95.55 99.67
UNeXt [7] 1.47 1.15 76.33 62.19 51.03 92.62 99.47 85.05 76.69 67.58 96.17 99.74
ConvUNeXt [10] 3.51 14.52 79.36 66.97 57.18 93.70 99.59 87.38 80.22 72.76 96.75 99.80
U-Lite [11] 0.88 1.52 75.66 60.00 50.52 92.61 99.51 84.51 75.00 67.13 96.16 99.75
CMUNeXt [12] 3.15 14.84 79.55 67.44 57.44 93.73 99.59 87.52 80.55 72.97 96.77 99.80
FBSNet [13] 0.61 5.80 77.92 64.76 53.83 93.48 99.59 86.26 78.61 69.99 96.63 99.79
TinyU-Net 0.48 3.34 80.27 68.75 58.80 93.93 99.59 88.05 81.48 74.05 96.87 99.80

are 52× smaller and showcasing 34× fewer FLOPs compared to the baseline
U-Net. The small number of parameters and FLOPs in TinyU-Net stem from
the lightweight design of our proposed CMRF module and the naive U-Net-
like architecture of TinyU-Net. Notably, despite UNeXt standing out with 1.15
GFLOPs among the compared lightweight models, its performance is subopti-
mal. In light of this phenomenon, we believe that the model with low compu-
tational complexity (i.e., low FLOPs) might encounter challenges in attaining
optimal performance. As quantitatively shown in Table 1, the non-lightweight
TransUNet ranks second to TinyU-Net, yet its parameters and FLOPs are 194×
and 19× greater than those of TinyU-Net, respectively. Furthermore, the re-
sults in Table 1 highlight that TinyU-Net achieves an impressive 80.04% in
IoU score for skin lesion segmentation. Specifically, TinyU-Net demonstrates a
+3.9% improvement in IoU score compared to the baseline U-Net and achieves
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Table 3. Ablation results (IoU (%)) for CMRF on ISIC2018 and NCP datasets. GL,
GGO, and LF denote consolidation, ground-glass opacity, and lung field, respectively.

Model Feature extraction Params FLOPs ISIC2018 NCP

block (M) (G) Lesion CL GGO LF

SegNet [26] Original 29.44 80.34 77.53 63.40 48.44 92.75
CMRF 0.64 7.02 78.42 63.66 50.60 92.80

CMUNeXt [12] Original 3.15 14.84 78.82 67.44 57.44 93.73
CMRF 1.97 12.23 79.16 67.48 57.58 93.74

Table 4. Ablation results (mIoU (%)) for the number of DWConv-BN blocks on NCP
datasets.

N 1 2 4 8 16

mIoU (%) 79.24 79.58 79.77 80.27 79.56

a +1.05% higher IoU score than TransUNet. TinyU-Net’s remarkable perfor-
mance improvement can be attributed to proposed CMRF module. This mod-
ule enhances feature representation by mining information from multi-receptive
fields in a network layer through the cascading strategy. In Table 2, it is note-
worthy that the lightweight CMUNeXt outperformed the non-lightweight Tran-
sUNet and closely trailed TinyU-Net in terms of performance. Its parameters and
FLOPs are 7× and 4× higher than those of TinyU-Net, respectively. We posit
that a potential explanation is that models characterized by high parameters and
computational complexity (i.e., high FLOPs) might not exhibit a performance
advantage when confronted with a limited amount of data. Our experimental
results imply that lightweight models hold promise for efficient medical image
segmentation in limited-resource settings.
Comparative qualitative results. Fig. 2 offers qualitative examples, illustrat-
ing the capability of our proposed TinyU-Net to accurately delineate the segmen-
tation of diverse lesions in both skin diseases and NCP with less dataset, and
mitigating issues of under-segmentation and over-segmentation. Significantly,
TinyU-Net, despite being extremely lightweight, demonstrates competitive seg-
mentation predictions when compared to other methods.
Ablation results. As shown in Table 3, directly replacing the feature extraction
blocks of encoder and decoder in SegNet [26] and CMUNeXt [12] with CMRF
modules significantly reduces model parameters and FLOPs while enhancing
segmentation performance. We attribute this phenomenon to the CMRF’s capa-
bility to fuse information from multi-receptive fields by a cost-friendly cascad-
ing strategy, thereby improving feature representation. Furthermore, the results
demonstrate that the CMRF module can easily integrate into other networks due
to its customizable adjustment of input and output channel quantities. Table 4
demonstrates Tiny-UNet’s optimal segmentation at N = 8 on NCP datasets. We
think that excessively large receptive fields may pick up irrelevant background
information, while overly small ones might not fully explore the whole lesion.
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5 Conclusions

To pursue optimized performance while preserving lightweight characteristics in
neural networks, we introduce a novel CMRF module that fuses information
from multi-receptive fields in a layer based on a cost-friendly cascading strategy
to improve feature representation. The CMRF proposed is general and flexible,
easily extendable to other networks, in our belief. Building upon our CMRF,
we further propose a lightweight TinyU-Net, a simple yet effective U-shaped
network, for medical image segmentation. Our TinyU-Net achieves state-of-the-
art performance with a small number of parameters and FLOPs on cost-effective
medical image datasets. We believe that the proposed method can adapt well to
limited-resource settings, thereby fostering global health equity.
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