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Abstract. Lymph node metastasis (LNM) classification is crucial for
breast cancer staging. However, the process of identifying tiny metastatic
cancer cells within gigapixel whole slide image (WSI) is tedious, time-
consuming, and expensive. To address this challenge, computational pathol-
ogy methods have emerged, particularly multiple instance learning (MIL)
based on deep learning. But these methods require massive amounts of
data, while existing few-shot methods severely compromise accuracy for
data saving. To simultaneously achieve few-shot and high performance
LNM classification, we propose the informative non-parametric classifier
(INC). It maintains informative local patch features divided by mask la-
bel, then innovatively utilizes non-parametric similarity to classify LNM,
avoiding overfitting on a fewWSI examples. Experimental results demon-
strate that the proposed INC outperforms existing SoTA methods across
various settings, with less data and labeling cost. For the same setting, we
achieve remarkable AUC improvements over 36.76% on CAMELYON16.
Additionally, our approach demonstrates excellent generalizability across
multiple medical centers and corrupted WSIs, even surpassing many-shot
SoTA methods over 7.55% on CAMELYON16-C. Code is available at
https://github.com/xmed-lab/INC.
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1 Introduction

Pathological Whole Slide Image (WSI) serves as the gold standard for cancer
diagnosis. For breast cancer, the lymph node metastasis (LNM) classification is
an essential diagnostic staging task, according to the tumor, nodes, metastasis
staging system. In clinical practice, it is tedious, time-consuming, and expensive

https://github.com/xmed-lab/INC
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to search tiny metastatic cancer cells from multiple lymph nodes within gigapixel
WSI. Therefore, deep learning based computational pathology schemes [1,17]
emerged to this end.
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Fig. 1. (a) Few-shot LNM classification meets high performance via the proposed
INC method on CAMELYON16 dataset [1]. (b) INC is a non-parametric classifier,
maintaining rich information without fine-tuning. The notion of a parametric classifier
can be regarded as an FC layer with fixed weights, while a non-parametric classifier
(e.g., KNN) uses the globally averaged feature. In comparison, our INC method keeps
all local features and matches them dynamically according to individual test examples.

Currently, the predominant WSI classification technique is multiple instance
learning (MIL) [12,19,22,11], including techniques like feature fusion [14], self-
attention [12,22], pretraining [4,13] etc. [18,15]. Notably, conventional MIL meth-
ods require massive data, e.g., Campanella et al. [2] used thousands of training
WSIs for LNM classification. However, acquiring a large training set can be
laborious, costly, and demands significant training computational resources. To
address these issues, few-shot methods have been proposed for WSI classification
tasks, which only use several training examples at hundreds of times less data,
e.g., text prompt learning [20], data-efficient MIL [19], prototype [5] with general
few-shot learning [24]. Besides, some pathological few-shot techniques [7,26,3,9]
are specially designed for patch classification, which are not directly applicable
to WSI classification without a crucial patch aggregation process.

Despite the achievement in reducing data cost, performances of existing
methods are obviously sacrificed using fewer WSIs. For example, the AUC of
CLAM [19] dramatically drops to 57.65% from 97.45% as Fig. 1 (a). In other
words, it is a trade-off between few data and high performance. While extra
information can compensate for the performance loss owing to the data scarcity.
For instance, leveraging weak labels [16] significantly enhances the model’s ca-
pability beyond that of the unsupervised method [27] for gland segmentation.
Motivated by this, we aim to use fewer WSIs with mask labels to save data and
achieve high performance at the same time. Importantly, many WSI-level labels
cost more labeling efforts than a few patch-level masks (when mask labels ≲ 1

30
WSI labels), indicating that our scheme saves both data and annotation costs.
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Another motivation is that, parametric classifier (e.g., FC layer) in MIL is
prone to overfit on a few WSI examples or specific medical centers (see MIL
methods in Tab. 3). Thus, we expect a non-parametric classifier without fine-
tuning on a fewWSIs. For existing non-parametric methods, like KNN evaluation
protocol for pretrained models [4], or Prototype [5] and SimpleShot [24] based on
mask label, they use the global static feature as Fig. 1 (b). Unfortunately, these
methods discard rich information of local patches to obtain the global feature,
resulting in suboptimal performance. Besides, some KNN based MIL methods
for text [10], CT [25] etc. are not designed for gigabyte WSI.

Based on the above motivations, we proposed the informative non-parametric
classifier (INC) to simultaneously achieve few-shot and high performance LNM
classification. Specifically, it maintains all deep features of local patches divided
by mask label, then utilizes non-parametric similarity between the informative
gallery WSI bags and the query bag to classify LNM. Experimentally, our method
surpasses existing SoTA MIL methods across various settings. Under the same
setting on CAMELYON16 [1] dataset, the AUC improvements are nontrivial over
36.76%. Importantly, our method saves the labeling cost when applying much
less data, with better performances. Furthermore, we also achieve outstanding
performance when generalizing to multiple medical centers on CAMELYON17
[17], and the AUC on corrupted WSIs of CAMELYON16-C [28] even surpasses
many-shot SoTA over 7.55%.

2 Methodology

The primary benefit of the INC lies in its ability to preserve rich local features,
thereby avoiding information loss in previous parametric classifier methods such
as MIL, or non-parametric methods that rely on mean feature values (e.g., KNN
and Prototype [5]). In contrast to static classifiers with fixed parameters or global
features, INC functions as a dynamic classifier by incorporating bags of local fea-
tures. This unique approach guarantees the retention of the most comprehensive
information when compared to other classifiers, enabling it to dynamically adapt
to different medical centers or scanners without the risk of overfitting. Here, we
firstly elaborate how we generate the classification logit based on similarity from
bags of local features. Then we describe a further retrieval aggregation step,
which considers multiple related logits for slide-level prediction.

2.1 Informative Similarity Logit for Non-parametric Classifier

The core step of the proposed INC is to produce a classification logit from
bags of local features. This is accomplished by computing the similarity between
informative gallery feature bags and query bags, taking into account both the
cancer region and the normal region. In light of the fact that the similarity stems
from informative local features, it is referred to as the informative similarity logit.

To be specific, we firstly extract the patch features via a self-supervised
pretrained encoder f(·), which returns L2 normalized features. Then, we get
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the bag of local gallery features G ∈ RNg×C (support WSIs) and query features
Q ∈ RNq×C (a test WSI) as:

G = f(Xg), Q = f(Xq), (1)

where Xg,Xq indicate gallery and query patch instances, at instances quantity
of Ng and Nq, respectively. Then the target similarity matrix S ∈ RNg×Nq

between gallery bag and query bag are calculated by matrix multiplication as:

S = GQ⊤. (2)

The above cosine similarity matrix contains rich information between gallery
feature bag and query bag. To get the prediction score, we need logits for each
query via reducing S along the gallery dimension (Ng). In the step, we firstly
divide S into a set of positive similarity matrix S+ ∈ RNp×Nq and negative
similarity matrix S− ∈ RNn×Nq as:

S = {S+,S−}, s.t. S+ = Sidx(m=1), S− = Sidx(m=0), (3)

where the mask label m ∈ RNg is used to divide positive gallery related similar-
ities S+ = Sidx(m=1) and negative similarities S− = Sidx(m=0) via indexing on
the gallery dimension. Note, Np, Nn indicates the number of cancer patches and
normal patches, respectively.

To dynamically utilize suitable similarities for each query, we take the top-k

gallery similarities of S+,S− as Ŝ
+
∈ RNk×Nq , Ŝ

−
∈ RNk×Nq at top-k size Nk.

Then we generate the informative similarity logit s ∈ RNq for each query as:

s =

∑
Ŝ

+
−

∑
Ŝ

−

Nk
, (4)

where top related cancer gallery patches and normal patches are dynamically
used as the non-parametric classifier.

2.2 Retrieval Aggregation of Informative Non-Parametric Classifier

To get the slide-level prediction from the patch logit in Eq. 4, we need a fur-
ther step to aggregate the patch logits. Our solution is to select the highest
logit in Eq. 4, then conduct retrieval within the bag of query features to ag-
gregate discriminative and related logits. Let Q1 to be the query feature at the
highest similarity logit, namely idx(max(s)) using max and indexing operation,
respectively. Then, we can retrieve the index array r of related patch queries as:

r = idx(Q1Q
⊤> t), (5)

where cosine similarities Q1Q
⊤ higher than a threshold t are indexed into r.

To aggregate the related logits according to their importance, we need an
aggregation weight w for each logit according to the similarity ŝ from r. Then
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Fig. 2. Data flow of the proposed INC. Note, × indicates matrix multiplication, and
each symbol can be found from Eq. 1 to Eq. 7.

we multiply it with a softmax temperature τ before the softmax operation σ(·).
As above descriptions, we have the formula of aggregation weights:

w = σ(ŝ · τ) s.t. idx(ŝ) = r. (6)

In the last, we multiply the related logits ŝ with the transposed weight w⊤

to realize the weighted sum. Until here, we get the slide-level prediction p from
the aggregation of related query logits as:

p = ŝw⊤. (7)

3 Experiments

Dataset. The main dataset is CAMELYON16 [1], consisting of 399 H&E stained
WSIs for breast cancer LNM classification. The train-val set has 270 slides,
and there are 129 test slides. To test the generalization, we introduced CAME-
LYON17 [17] and CAMELYON16-C [28]. Specifically, CAMELYON17 contains
5 medical centers, where 500 labeled WSIs (1 invalid) are used to test. Besides,
CAMELYON16-C is an augmented dataset simulating WSI scanning corruption
from CAMELYON16. Following Li et al. [15], 243 WSIs (9:1) of CAMELYON16
are used to train many-shot baselines. Besides, CAMELYON17 (499 WSIs) and
CAMELYON16-C (129 test WSIs) are used to test only, using models trained
from CAMELYON16 to evaluate generalization as Li et al. [15].
Implementation and evaluation. We use a self-supervised pretrained model
[13] based on backbone ViT-S/8 [8] as the image encoder. The patch size is 256 at
×20 magnification. To fit the input size of ViT-S/8 [8], we apply five-crop at side
224 without other augmentation to extract features and use the mean feature
as the local feature. For a fair comparison, we apply this backbone, weights, and
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Table 1. Few-shot results on CAMELYON16, CAMELYON17 [17] and
CAMELYON16-C [28], using 8 WSIs in total. Note, all the methods are imple-
mented in the same settings for fair comparison, except results with † based on CLIP
[21]. Besides, ∗ indicates the usage of mask labels as ours, where SimpleShot [24] is a
general few-shot method, combined with Prototype [5].

Method
CAMELYON16 CAMELYON17 CAMELYON16-C

AUC (%) Acc. (%) AUC (%) Acc. (%) AUC (%) Acc. (%)

†TOP [20] 75.41 - - - - -
KNN-mean 58.12±8.02 41.09±2.45 45.80±2.75 37.72±2.20 57.16±7.94 40.62±3.42

KNN-max 59.45±8.01 40.93±1.92 50.91±7.23 41.84±10.74 59.77±7.96 43.26±7.09

CLAM-MB [19] 57.65±6.79 48.68±6.79 52.49±6.42 49.26±9.87 57.12±3.58 48.53±7.86
∗Prototype [5] 48.83±2.88 49.77±2.57 57.50±1.52 64.13±0.71 48.69±2.88 59.53±2.10

∗SimpleShot [24] 61.95±3.89 59.22±2.38 71.58±2.50 69.98±1.69 62.40±2.75 66.67±2.59

INC (ours) 98.71±0.22 95.35±0.49 89.42±0.81 85.37±1.76 95.27±0.76 85.89±2.61

crop strategy to all implemented baselines. The few-shot WSI numbers are 1, 2,
4, 8 (default shot). All the hyperparameters are gird searched on the validation
set with detailed experiments in Supplementary B. For baselines, we studied the
implementations in Supplementary A for fair and strong baselines. For stable
results, we randomly split the dataset 5 times (fixed random seed at 1024 for
good reproducibility), and report the average Area Under the Curve (AUC) and
Accuracy (ACC) with corresponding standard deviation (±).

Table 2. Few-shot results on CAMELYON16 [1] (8 WSIs in Tab. 1). Note, 2 WSIs
is also 1-shot (1 WSI per class) for TOP [20], KNN, CLAM-MB [19], while others
use 2 positive WSIs. All the baselines use the same self-supervised encoder [13], but †
indicates the CLIP [21] encoder, and ∗ indicates the usage of mask labels as ours.

Method
1 WSI 2 WSIs 4 WSIs

AUC (%) Acc. (%) AUC (%) Acc. (%) AUC (%) Acc. (%)

†TOP [20] - - 67.14 - 69.67 -
KNN-mean - - 50.49±10.86 39.22±3.52 53.71±13.17 43.10±3.05

KNN-max - - 45.03±11.75 39.69±6.19 55.01±15.94 46.82±12.20

CLAM-MB [19] - - 50.19±12.75 43.88±7.99 52.89±9.33 45.74±8.26
∗Prototype [5] 52.61±7.77 49.30±7.94 44.15±4.33 42.95±6.37 43.43±8.80 40.16±7.38

∗SimpleShot [24] 59.82±9.96 51.16±10.53 57.23±8.56 51.32±7.28 55.74±13.36 49.77±10.12

INC 87.33±8.72 82.48±10.20 93.24±7.01 88.68±4.00 94.15±1.18 88.84±1.81

Remarkable improvements in few-shot LNM classification. We compare
our results with previous SoTA methods as Tab. 1 in fair implementation, where
the encoder, crop strategy, and data split are the same. The results suggest our
INC has surpassed SoTA few-shot baselines at large margins. Specifically, on
CAMELYON16 [1], our AUC is 98.71±0.22 which is higher than the baseline
in the same setting (SimpleShot [24]) by 36.76%, and the gain of accuracy is
36.13%. For the results of TOP [20] (only single data split), the improvement
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Table 3. Our few-shot INC with 8 WSIs meets high performance on CAMELYON16,
CAMELYON17 [17] and CAMELYON16-C [28], even beyond SoTA many-shot meth-
ods using 243 WSIs at fair implementation. Notably, our overall labeling cost is com-
parable or less than these many-shot methods. Note, signs ‡ and † indicate referenced
results with partial results, and † means single test without repeats.

Method
CAMELYON16 CAMELYON17 CAMELYON16-C

AUC (%) Acc. (%) AUC (%) Acc. (%) AUC (%) Acc. (%)

many-shot
†dMIL-Trans [6] 91.69 81.40 - - - -

†UNI [5] 97.5 - - - - -
‡MHIM-MIL [23] 96.49±0.65 92.48±0.35 - - - -
‡Trans.+FT [15] 96.7±0.3 - 71.7 - 85.7 -

MIL-mean 59.30±3.35 64.81±3.27 66.63±1.84 66.21±2.81 57.87±6.17 55.50±3.66

MIL-max 89.36±0.44 86.51±0.46 88.07±0.40 77.24±1.85 73.31±2.37 64.65±1.46

MIL-top5 [19] 96.16±2.37 91.16±1.44 60.04±3.52 57.07±3.39 85.02±3.16 61.50±10.04

ABMIL [12] 92.02±0.41 90.17±0.22 83.34±1.24 79.93±1.83 84.59±2.40 82.08±2.20

CLAM-SB [19] 97.25±0.16 92.56±0.62 87.03±2.36 79.48±3.99 86.42±2.46 74.81±1.61

CLAM-MB [19] 97.45±1.81 94.57±2.21 85.00±1.23 76.07±2.37 87.72±2.02 75.35±4.23

TransMIL [22] 95.77±2.24 90.39±2.11 88.02±1.63 81.35±2.74 87.31±2.83 72.75±2.56

few-shot
INC (ours) 98.71±0.22 95.35±0.49 89.42±0.81 85.37±1.76 95.27±0.76 85.89±2.61

is also remarkable at 23.30%. When generalized to CAMELYON17 [17] and
CAMELYON16-C [28], the proposed INC still works best, where the AUC gain
is 17.84% and 32.87% on these datasets, respectively.

Besides the results of 8 WSIs in Tab. 1, we list more results using fewer
WSIs in Tab. 2 on CAMELYON16 [1]. From these tables, we find INC is sig-
nificantly higher than existing methods. Specifically, it surpasses the second by
27.51%, 26.10%, 24.48%, 23.30% on AUC for 1, 2, 4, 8 WSIs, respectively, and
the corresponding accuracy improvements are 31.32%, 37.36%, 39.07%, 19.22%,
respectively. These remarkable results can be attributed to our effective uti-
lization of crucial local data (patch) and task-specific designs, which suit WSI
much better than existing methods borrowed from the general CV. It suggests
that maintaining rich local information is necessary, instead of generating global
information like Prototype [5] and SimpleShot [24]. Also, it’s more suitable to
used non-parametric classifier instead of parametric classifier (CLAM-MB [19])
in few-shot setting.

Few-shot INC meets high performance beyond many-shot methods.
Besides great successes in few-shot setting, our INC even shows higher results
(97.5% vs. our 98.7%) than many-shot methods (243 WSIs vs. our 8 WSIs) as
Tab. 3. Notably, the labeling cost is also reduced when applying 8 or less masks
(30 times labeling cost for quantity ≤ 8

243 ). These results indicate our method
takes advantages in both performance and labeling and data cost.

In real practice, the WSI scanners are different across hospitals with vari-
ations. Thus, the model train from one hospital often meets obvious perfor-
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Table 4. Ablation study on the CAMELYON16 [1] using 8 WSIs showed that the
mask label (SimpleShot) only slightly improves the baseline (KNN). However, the core
improvements come from informative local features for similarity logit, and the retrieval
aggregation further enhances the performance.

Setting Mask Label Informative Similarity Logit Retrieval Aggregation AUC (%)

KNN-mean ✗ ✗ ✗ 58.12±8.02

SimpleShot ✔ ✗ ✗ 61.95±3.89

Ours Eq. 1-4 ✔ ✔ ✗ 96.43±0.49

Ours Eq. 1-7 ✔ ✔ ✔ 98.710.22

mance drops when applied to other medical centers. For example, the parametric
MIL method, CLAM-MB [19] produces good results on CAMELYON16 at AUC
97.45%, but it turns to 85% on CAMELYON17 and 87.72% on CAMELYON16-
C, where the decreases are 12.45% and 9.73%, respectively. In comparison, our
INC shows stronger generalization ability at AUC 89.42% and 95.27%, which
greatly exceeds previous methods. Specifically, INC surpasses the best many-
shot method by 7.55% on CAMELYON16-C. Notably, non-parametric classifiers
(few-shot baselines) present similar results for different datasets, which support
our motivation of non-parametric classifiers fine.

ProtoType SimpleShot INC (ours)GT

pos

neg

pos

neg

Fig. 3. Visualizations on CAMELYON16 datasets. Ground-truth tumors are circled in
yellow, predicted LNM regions are red, and false predictions are noted by white boxes.

Ablation study. In Tab. 4, we find that the usage of mask label in SimpleShot
can only improve the KNN baseline by 3.83% in AUC only. While our informative
similarity logit improves the baseline by 40.59%. It suggests that keeping rich
local information is very crucial to make good use of mask label in few-shot
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setting. Besides, the retrieval aggregation can further enhance the results at a
high level, which demonstrates the significant effectiveness of the proposed INC.
Visualization results. We further depict the visualizations in Fig. 3 via the
query logits ŝ in Eq. 4. Since KNN methods use global features without lo-
cal information, we compare our method with Prototype and SimpleShot. We
find our INC obviously shows better results than other baselines. Specifically,
baselines predict more false negatives. Besides, we draw retrieval processes in
Supplementary C to show how INC works.

4 Conclusion

In summary, this study presents a novel, data-efficient, and effective informative
non-parametric (INC) classifier for the classification of lymph node metasta-
sis (LNM). In contrast to existing many-shot methods that heavily depend on
large datasets, or few-shot methods that seriously compromise performance, INC
successes to make few-shot LNM classification meet high performance, even be-
yond existing SoTA many-shot methods. Furthermore, the INC does not require
fine-tuning and avoids overfitting on specific medical centers or scanners, with
less labeling cost using only a few masks. Comprehensive experimental results
demonstrate that the INC attains the new SoTA in LNM classification, mean-
while offering several notable advantages.
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