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Abstract. General networks for 3D medical image segmentation have
recently undergone extensive exploration. Behind the exceptional perfor-
mance of these networks lies a significant demand for a large volume of
pixel-level annotated data, which is time-consuming and labor-intensive.
The emergence of the Segment Anything Model (SAM) has enabled this
model to achieve superior performance in 2D medical image segmenta-
tion tasks via parameter- and data-efficient feature adaptation. However,
the introduction of additional depth channels in 3D medical images not
only prevents the sharing of 2D pre-trained features but also results
in a quadratic increase in the computational cost for adapting SAM.
To overcome these challenges, we present the Tri-Plane Mamba (TP-
Mamba) adapters tailored for the SAM, featuring two major innova-
tions: 1) multi-scale 3D convolutional adapters, optimized for efficiently
processing local depth-level information, 2) a tri-plane mamba module,
engineered to capture long-range depth-level representation without sig-
nificantly increasing computational costs. This approach achieves state-
of-the-art performance in 3D CT organ segmentation tasks. Remark-
ably, this superior performance is maintained even with scarce train-
ing data. Specifically using only three CT training samples from the
BTCV dataset, it surpasses conventional 3D segmentation networks, at-
taining a Dice score that is up to 12% higher. The code is available at
https://github.com/xmed-lab/TP-Mamba.

Keywords: 3D medical image segmentation · Segment Anything · Parameter-
and data-efficient adaptation

1 Introduction

3D medical segmentation serves as a foundational process in medical analy-
sis, crucial for accurate diagnosis diagnosis, treatment planning, and disease
monitoring. Courtesy of deep learning advancements, automatic segmentation
methods have significantly advanced, achieving great success in tasks like tumor
and organ segmentation [11,5,14,15,29,28,31,18]. Typically, the development of
high-performance segmentation models for 3D medical images necessitates large

https://github.com/xmed-lab/TP-Mamba
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Fig. 1: (a) Comparative performance analysis of TP-Mamba adapters against
two conventional 3D segmentation networks and two adaptation methods, using
12%, 25%, and 100% of the training data from the BTCV dataset. (b) Compar-
ison of convergence rates between SAM-based adaptation and two conventional
networks, using 25% of the training data. (c) Increased GFlops per ViT block
for four different adapters, given the input size 96×96×96 and low-rank r = 96.

quantities of high-quality annotated data, a process that is both time-consuming
and labor-intensive.

Recently, the Segment Anything Model (SAM) [12], built upon vision trans-
former (ViT) [2] and pre-trained on a billion-level dataset, has demonstrated
remarkable general performance across various tasks in diverse domains and
varying data scales [20,27,16], including the 2D medical field [32,9,22]. Building
on this success, fine-tuning the pre-trained SAM model with specific 3D medical
datasets emerges as a promising method to improve segmentation performance,
particularly when data is scarce. However, adapting SAM for processing 3D med-
ical data is non-trivial. Firstly, SAM is tailored for 2D images, thereby neglecting
the crucial third-dimensional (depth) information present in medical images. Sec-
ondly, fine-tuning all parameters of SAM, given the limited 3D data, incurs high
computational and time costs, and often leads to severe overfitting [24]. More-
over, this approach risks compromising the generalized knowledge acquired from
the original large-scale data, potentially resulting in diminished performance[17].

To address the above problems, SAMed [32] first treats slices at different
depths as separate batch images and transfers the 3D data to 2D slices. Further-
more, it freezes the parameters of SAM, and only tunes the lightweight Low-Rank
adapters (LoRA) [8] integrated into SAM, maintaining the learned knowledge
while reducing the fine-tuning cost. Although intuitive, SAMed only captures the
features of 2D slices, and neglects the inter-slice (i.e., the depth) correlations.
To bridge this gap, MA-SAM [1] and 3DSAM-Adapter [3] both introduce 3D
convolutional adapters for capturing depth-wise information. Equipped with 3D
convolutional layers, the original SAM can capture translational invariances and
recognize local 3D features. However, due to the intrinsic locality of convolution
operations, they exhibit limitations in modeling long-range dependencies.

Considering the success of self-attention (SA) in capturing global relation-
ships, a naive solution is to divide the 3D data into multiple patches and subse-
quently deploy SA modules as low-rank adapters to learn the long-range corre-
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lations existing among these patches. However, the SA requires quadratic com-
plexity in terms of the number of patches, resulting in expensive computational
overhead when addressing 3D segmentation tasks. As shown in Fig. 1(c), given
the input with the size of 96 × 96 × 96 and low rank r = 96, the increased
GFlops per block in a ViT-B (consisting of 12 blocks in total) will amount
to 18.86, nearly 145 times greater than that of the standard LoRA. Recent
advancements in state space models, especially Mamba [4], present a promising
solution for learning global features with significantly lower computational costs.
There are also some researchers adapting Mamba to the medical domain, e.g.
, U-Mamba [21], to reduce the computation cost of vision transformers. These
methods simply flatten 3D images into 2D sequences and directly use mamba to
model the causal relations between the sequences, i.e., the current elements can
only interact with any of the previously scanned samples through a compressed
hidden state. However, due to the non-casual nature of 3D medical data, naively
applying this approach to flattened sequences cannot learn the relations between
unscanned patches, resulting in limited receptive fields.

In this paper, we introduce a novel tri-plane mamba (TP-Mamba) adapter
and incorporate it into SAM to capture both local and global 3D non-casual
information of medical images in a parameter-efficient way. The proposed TP-
Mamba adapter has two key components. Specifically, a mixture of four paral-
lel 3D convolutional layers with different dilation rates is used to capture the
3D multi-scale local depth-wise features. Then, a tri-plane scan module is de-
signed to structurally scan the 3D features along three 2D planes (depth-height,
depth-width, and height-width planes), as shown in Fig. 2(c). Different from the
single-direction scanning in the original Mamba, our module can ensure that
each element in a 3D feature is attended by other elements from different direc-
tions. During the training, we only fine-tune the proposed TP-Mamba adapters
while freezing all other parameters of SAM. Overall, the TP-Mamba adapters,
proficient in capturing multi-scale and local-global feature representations for
3D medical data, also ensure parameter- and data-efficient adaptation,
thereby facilitating rapid convergence, as shown in Fig. 1(a) and Fig. 1(b).

Comprehensive experiments conducted on organ segmentation tasks with dif-
ferent data scales demonstrate that TP-Mamba adapters achieve state-of-the-art
performance against ten baselines consisting of Transformer-based, convolutional-
based, Mamba-based networks, and SAM-based fine-tuning algorithms.

2 Methodology

2.1 Architecture Overview

The architecture of the proposed tri-plane mamba adapters for 3D-SAM is
sketched in Fig. 2(a). The input 3D image batch X ∈ RB×1×D×H×W is first
re-shaped to BD×1×H×W and fed into the patch embedding module of the pre-
trained SAM model to extract the patch embeddings F0 ∈ RBD×C×h×w, where
C is the number of feature dimensions, D is the number of slices (depths) per
3D image and (H,W )/(h,w) is the size of original/down-sampled images/feature
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(a) Overview of the pre-trained SAM with adapters on 3D segmentation.
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(b) ViT block
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(c) Architectural details of the proposed Tri-plane mamba

Fig. 2: (a) Overview of the pre-trained SAM with adapters on 3D segmentation
tasks. Given the 3D images, the patch embedding layer and 12 ViT blocks from
the pre-trained SAM will extract 3D features. A decoder is used to predict the
segmentation maps via four feature maps from the last four blocks. (b) The
details of the ViT block equipped with LoRA and the proposed TP-Mamba
adapters. (c) Architectural details of the proposed TP-Mamba adapters.

maps. Next, the sequential ViT blocks of pre-trained SAM are used to extract
features as follows:

Fi = ψi(Fi−1), (1)

where Fi ∈ RBD×C×h×w indicates the feature embeddings extracted from i-
th ViT blcok of the SAM, where i ∈ [1, n]. ψi is the i-th ViT block with the
proposed tri-plane mamba adapters and low-rank adapters (LoRA) [8].

The structure of ViT block ψ is illustrated as Fig. 2(b). Features will be
fed into a multi-head self-attention module where LoRA is inserted into it [8].
Next, a normalization function (instantiated as the layer normalization), multi-
layer perception (MLP), and another normalization function are sequentially
deployed to extract features. Finally, the proposed tri-plane mamba module is
used to capture both local and global 3D features as the output of ViT block.

After encoding image features, a decoder model is designed to predict the
final segmentation maps P ∈ RB×K×D×H×W , where K is the number of classes.
Finally, the Dice and cross-entropy loss function [26] is utilized to calculate the
training loss for each batch data:

loss = LDiceCE(P,Y), (2)
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Fig. 3: The illustration of the SSM-based mamba [4] block ϕhw in Eqn. 3, exem-
plified using height-width plane scanning.

where Y is the ground-truth maps.

Next, we will elaborate on the details of the tri-plane mamba module, and
decoder model.

2.2 Tri-plane Mamba Module

To parameter-efficient adapt 3D features for a 2D pre-trained SAM model, we
propose to employ a tri-plane mamba module to aggregate 3D features from
three planes. Specifically, given a feature tensor F ∈ RBD×C×h×w from the last
layer of the ViT block, we first reshape it as the standard 3D format, (batch,
features, depth, height, width). Then a 3D convolution layer with kernel size
r × C × 3× 1× 1 is used to reduce the feature dimension from C to r, keeping
the adapters parameter-efficient. Considering that the main body of the ViT
block ignores the learning of depth-level features, four 3D convolution layers
with kernel size r

4 × r × 3 × 1 × 1 and dilation rates [1,2,4,8] are deployed to
extract multi-scale local representations parallelly. Then feature tensors from
four layers are concentrated together, denoted as F ∈ RB×r×D×h×w.

Next, F are split and flattened from three planes (i.e., height-width, depth-
height, and depth-width planes). The processed long-sequential feature tensors
are denoted as Fhw ∈ RBD×hw×r, Fdh ∈ RBw×Dh×r and Fdw ∈ RBh×Dw×r,
respectively, as shown in Fig. 3. Next, three Mamba blocks [4] ϕhw, ϕdw and
ϕdh are utilized for highly efficient sequential feature learning with long-range
correlations from tri-plane features, respectively. After the Mamba blocks, the
features are added together. This process can be defined as:

F = ϕhw(Fhw) + ϕdw(Fdw) + ϕdh(Fdh). (3)

The detailed module pipeline of the mamba block is illustrated in Fig. 3.
Finally, another 3D convolutional layer with the kernel size of C × r× 3× 1× 1
is used to increase the feature dimension to C.

Decoder The feature maps from the last four ViT blocks are concentrated
together and fed into a series of 3D convolutional, instance normalization, GELU
activation [7], and upsampling layers to recover the resolutions of features as
the original one. Finally, a convolutional layer is implemented to predict the
segmentation maps P ∈ RB×K×D×H×W via the upsampled feature maps.
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2.3 Implementation Details

Dataset: We conducted comprehensive evaluations of our method on the Be-
yond the Cranial Vault (BTCV) dataset with the setting of employing varying
quantities of training data. The BTCV dataset, as referenced in the study by [13],
comprises 30 CT volumes annotated manually for 13 abdominal organs. We split
the dataset into 24 training and 6 testing cases for the full training data utiliza-
tion scenario. In scenarios with reduced training data, specifically 25% and 12%,
we randomly selected 6 and 3 training cases five times respectively. The perfor-
mance metrics reported are the averages of these five runs, ensuring a robust
evaluation of our method under varied training data conditions.
Data Processing: The intensity values of each CT scan in BTCV dataset were
truncated within the range of [-200, 250] Hounsfield Units (HU) for observing
abdominal organs. The HU values are then normalized to the range of [0, 1] using
min-max normalization. Next, the data is resampled to 1.0 mm isotropic spacing
during training and inference, using the input image size of 96×96×96 (depth,
height, and width) and batch size 1. The sliding-window inference strategy is
employed when evaluating the test set’s performance.
Training and inference Details: We use pre-trained SAM based on ViT-B-
163 as our backbone network. For all experiments, the AdamW optimizer [19] is
applied, with the learning rate gradually reduced from 0.0002 to 0 as the 1,000
training epochs. Training data augmentation includes spacing, random crop-
ping, flipping, and contrast adjustments. All experiments are implemented with
Pytorch [10]. We assess model performance using the Dice similarity coefficient
score at 1.0 mm tolerance for volumetric accuracy. The uniform framework serves
as a standard testbed for evaluating all models, ensuring neutrality and fairness.
This approach deliberately avoids favoring any model based on variables such
as input size, spacing, data augmentations or evaluation techniques.
Compared methods: We select eight renowned models designed for medical
volumetric segmentation tasks to benchmark our approach, including nnUNet [11],
VNet [23], UNETR [6], SwinUNETR [5], TransBTS [30], 3D-UX-Net [14], Med-
NeXt [25], and U-Mamba [21]. In addition, we also evaluate two adapter algo-
rithms for SAM: SAMed [32] which utilizes LoRA adapters, and MA-SAM [1],
employing 3D convolution adapters.

3 Experiments

3.1 Evaluation on BTCV Dataset

Table. 1 presents a detailed comparison of the performance between our method
and ten baseline networks on the BTCV dataset, using varying proportions of
training data: 100%, 25%, and 12% respectively.

Table. 1 demonstrates that: ❶ our algorithm consistently outperforms
others across various settings. Specifically, compared to other 3D segmen-
tation networks, our method surpasses the best-performing network by margins

3 https://huggingface.co/timm/samvit base patch16.sa1b

https://huggingface.co/timm/samvit_base_patch16.sa1b
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Table 1: Segmentation results on BTCV dataset. The red and blue numbers
respectively indicate the best and second-best Dice score.
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100% of The Training Data (24 samples)

nnUNet 96.4 94.7 94.9 74.8 75.5 97.1 79.4 90.8 84.3 77.7 79.4 64.4 63.3 82.5
VNet 92.8 91.7 93.0 70.5 72.2 96.1 81.0 88.7 83.5 68.1 77.9 64.2 60.1 80.0
UNetr 91.5 92.8 91.2 60.2 72.0 93.0 80.1 87.5 80.2 67.8 71.8 61.6 57.4 77.5

TransBTS 94.1 93.9 93.7 75.9 69.2 96.5 82.5 88.8 85.0 73.1 77.1 68.1 55.0 81.0
SwinUNetr 95.7 94.4 94.1 71.5 75.7 96.9 78.8 90.1 85.7 74.5 80.7 66.7 64.6 82.3
3D-UX-Net 95.3 94.2 93.6 71.9 71.6 96.5 82.3 90.4 84.8 71.3 76.8 67.5 66.4 81.8
MedNeXt 96.5 95.0 95.0 71.5 77.2 97.2 81.7 91.0 85.4 77.1 79.3 68.0 65.9 83.1
U-Mamba 95.8 94.5 94.6 73.8 75.1 96.9 81.7 90.8 84.7 75.7 79.3 64.4 57.7 81.9

SAMed 93.4 94.7 94.9 76.2 75.5 96.7 78.7 90.6 84.1 78.1 77.9 64.1 63.9 82.2
MA-SAM 96.3 94.9 94.8 73.3 74.8 97.1 82.4 90.8 83.6 76.5 79.8 63.8 63.7 82.4

TP-Mamba 96.6 95.0 94.9 79.6 76.3 97.2 86.6 91.5 87.1 77.0 85.1 68.3 67.1 84.8

25% of The Training Data (6 samples)

nnUNet 84.2 90.8 91.0 42.6 45.4 94.5 52.4 81.4 78.8 61.8 63.4 57.7 50.0 68.8
VNet 74.1 85.0 81.5 44.7 0.0 86.8 46.7 77.1 76.4 0.2 46.7 0.0 0.0 47.6
UNetr 78.1 86.2 80.1 0.0 0.0 90.6 42.1 78.6 64.4 40.4 32.1 0.0 0.0 45.6

TransBTS 62.3 80.4 73.1 40.7 0.0 94.7 25.0 73.5 62.1 46.4 27.9 0.0 0.0 45.1
SwinUNetr 83.0 89.8 89.2 36.1 55.2 90.3 59.2 83.6 77.2 65.2 60.8 60.4 54.1 69.5
3D-UX-Net 76.4 87.8 88.3 53.1 64.0 94.1 47.8 85.5 81.2 66.7 59.0 58.9 56.6 70.7
MedNeXt 81.3 91.4 90.1 52.6 57.1 92.8 50.8 84.4 78.7 68.4 64.7 63.3 59.1 71.9
U-Mamba 87.2 87.6 87.4 46.6 63.5 92.8 42.6 82.9 74.5 66.7 64.9 48.5 46.2 68.6

SAMed 90.8 89.2 90.0 62.1 64.4 94.4 64.5 87.0 78.8 69.2 70.0 56.6 52.8 74.6
MA-SAM 90.9 92.5 92.7 74.2 63.8 95.9 63.6 86.6 81.8 71.1 70.6 57.2 53.4 76.5

TP-Mamba 94.5 93.4 93.7 75.8 63.1 96.4 77.2 87.2 85.2 73.2 78.9 60.9 56.7 79.7

12% of The Training Data (3 samples)

nnUNet 80.7 82.8 57.3 1.9 35.3 91.2 35.4 78.4 73.6 27.1 32.4 2.4 9.5 46.8
VNet 1.9 54.6 0.0 0.0 0.0 81.7 25.1 36.6 1.9 0.0 0.0 0.0 0.0 15.5
UNetr 72.4 56.7 0.0 0.0 0.0 87.9 26.4 26.7 0.0 0.0 0.5 0.0 0.0 20.8

TransBTS 29.3 47.1 21.6 0.0 0.0 90.7 11.2 17.0 0.0 23.6 8.6 0.0 0.0 19.2
SwinUNetr 64.3 79.5 58.8 7.5 45.6 90.7 37.7 79.4 69.6 49.4 26.4 38.6 32.8 52.3
3D-UX-Net 72.0 80.5 67.2 26.1 43.8 89.5 35.4 80.9 74.3 45.6 17.2 42.3 16.6 53.2
MedNeXt 42.1 76.3 62.0 36.1 55.6 87.5 36.0 80.1 70.0 58.3 37.4 29.9 24.5 53.5
U-Mamba 66.9 72.8 58.9 20.9 51.5 90.7 36.2 78.9 71.1 42.0 13.6 36.0 10.2 50.0

SAMed 49.6 78.0 68.0 33.8 50.9 89.5 41.0 82.3 71.3 62.3 42.4 29.9 25.5 55.7
MA-SAM 64.1 84.0 75.5 33.2 55.4 92.6 45.2 84.1 72.8 58.8 37.6 30.1 33.1 59.0

TP-Mamba 88.6 90.7 81.1 42.8 52.3 95.3 59.4 85.8 80.5 59.8 45.9 37.7 35.3 65.8

of 1.7%, 7.8%, and 12.3% in average Dice score. Additionally, when compared
to adapter algorithms, our method maintains a lead of at least 2.4%, 3.2%, and
6.8% in average Dice score; ❷ Our algorithm exhibits notable data effi-
ciency. Even when the training data is reduced from 100% to 25% and 12%,
our method maintains a relatively stable performance level, in contrast to the
significant performance deterioration observed in other comparative methods.

Fig. 4 presents a comparative analysis of the Dice score curves for different
networks during the training process. This illustration clearly shows that our
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Fig. 4: Comparison of convergence rates between our method and two conven-
tional networks and two adapter algorithms on three settings.

algorithm converges more rapidly, a benefit attributable to the parameter-
efficient adapters and the extensive prior knowledge encapsulated in the pre-
trained SAM. Specifically, when trained with only 12% of the data, our algo-
rithm achieves performance comparable to traditional segmentation networks
by around the 400th epoch. Furthermore, with 25% and 100% of the training
data, it surpasses the performance of segmentation networks trained for 1000
epochs in just around 200 epochs.

Table 2: Ablation on 3D
conv adapters

3D Conv Dice

conv (k=3) 75.1
MS conv (k=3) 78.9
conv (k=5) 75.9

MS conv (k=5) 79.0

Table 3: Ablation on the
scanning of mamba

Mamba Dice

Volume 73.9
hw-plane 74.4
dw-plane 76.5
tri-plane 78.7

Table 4: Ablation on the
value of low rank r

r Dice

r = 24 78.3
r = 48 78.0
r = 96 78.9
r = 192 78.9

3.2 Ablation Analysis

All models of ablation study are trained with 25% of the training data.
Effectiveness of the multi-scale 3D convolution module. To validate the
effectiveness of this module, we conducted four sets of experiments. Firstly, we
replaced the multi-scale (MS) 3D convolution layers with kernel size r

4 × r ×
3 × 1 × 1 shown in Fig. 2(c) with a single 3D convolution layer with kernel
size r × r × 3 × 1 × 1. Secondly, we increased the kernel size along the depth
dimension from 3 to 5. Table. 2 shows that the MS design significantly enhances
performance, benefiting from the expansion of the model’s local receptive field.
Effectiveness of the scanning strategy. Table. 3 shows that scanning from
depth-width planes surpasses both volume flattening and scanning from height-
width planes, primarily due to its more effective capture of depth-level and 3D



TP Mamba 9

structural information. Furthermore, ensemble scanning across all three planes
(height-width, depth-width, and depth-height) further boosts performance
Effectiveness of the low rank r. As shown in Table. 4, our algorithm main-
tains a consistent performance across different values of r, presenting strong
robustness without significant fluctuations in performance.

4 Conclusion

In conclusion, this study presents a new advanced network in 3D medical image
segmentation, which adapts the Segment Anything Model (SAM) via the pro-
posed novel tri-plane mamba (TP-Mamba) adapters. To be specific, TP-Mamba
adapters feature multi-scale 3D convolution layers and a tri-plane mamba mod-
ule. These adaptations effectively enable local depth-level information processing
and capture long-range depth-level features without significantly increasing com-
putational demands. As a result, our approach not only mitigates the reliance
on extensively annotated datasets but also addresses the computational ineffi-
ciencies of SAM’s adaptation on 3D medical image segmentation. Our method
demonstrates its superiority in 3D CT organ segmentation, maintaining excep-
tional performance even when trained with limited data.
Limitations and future work. This work focuses solely on customizing the
image encoder of SAM for 3D medical image segmentation, while overlooking
the prompt encoder for interactive segmentation in SAM. In future studies, we
plan to explore the adaptation of SAM to interactive 3D medical segmentation.
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