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Abstract. In recent years, there has been remarkable progress in the
field of digital pathology, driven by the ability to model complex tissue
patterns using advanced deep-learning algorithms. However, the robust-
ness of these models is often severely compromised in the presence of data
shifts (e.g., different stains, organs, centers, etc.). Alternatively, contin-
ual learning (CL) techniques aim to reduce the forgetting of past data
when learning new data with distributional shift conditions. Specifically,
rehearsal-based CL techniques, which store some past data in a buffer
and then replay it with new data, have proven effective in medical image
analysis tasks. However, privacy concerns arise as these approaches store
past data, prompting the development of our novel Generative Latent
Replay-based CL (GLRCL) approach. GLRCL captures the previous
distribution through Gaussian Mixture Models instead of storing past
samples, which are then utilized to generate features and perform latent
replay with new data. We systematically evaluate our proposed frame-
work under different shift conditions in histopathology data, including
stain and organ shift. Our approach significantly outperforms popular
buffer-free CL approaches and performs similarly to rehearsal-based CL
approaches that require large buffers causing serious privacy violations.
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1 Introduction

Rapid advancements in deep learning models have revolutionized digital pathol-
ogy. However, such models are mostly validated in stationary environments
where data is presumed to follow a static distribution, which is usually not the
case in clinical settings. Histopathology slides originating from different organs,
staining protocols, centers, etc. possess various levels of covariance shifts [10]
(see examples in Fig. 1). However, deep learning models would show a drastic
performance degradation on datasets that do not follow the data distribution
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                                               Stain-shift                                                                                                  Organ-shift

     Breast      Colon              Liver              Ovary         Stomach         HE               CD8              TRI               CK5/14            PAS    

Fig. 1. Example of domain-shift in digital pathology. Left : different stainings of breast
samples. Right : Hematoxylin samples of different organs for tumor detection.

initially used for training the model [13]. On the other hand, naively updat-
ing the model with training data of a new domain may cause disruption in the
previously learned domain, also known as catastrophic forgetting [17]. One pos-
sible solution to prevent catastrophic forgetting is to retrain the deployed model
on accumulated datasets of both past and new domains. However, sharing past
datasets is often not feasible with medical data due to privacy concerns [24].
Also, past data may no longer be accessible, which would also hamper federated
learning approaches. Further, such approaches demand considerable amounts of
computation time and memory to store datasets and would require full model
retraining each time distribution shifts in the dataset are encountered.

Alternatively, Continual Learning (CL) has emerged as a promising incre-
mental learning paradigm to avoid catastrophic forgetting [7]. CL sequentially
accumulates knowledge over a stream of datasets, frequently referred to as tasks,
each with possible shifts, without truly revisiting the previous task. There are
various CL strategies detailed in [18], all aiming to reduce catastrophic forgetting
and tackle performance drops. Medical imaging researchers have also started ex-
ploring these CL strategies for various medical image analysis applications that
are prone to encounter domain shifts and novel classes, including segmentation,
disease classification, drug discovery, etc. [18]. In digital pathology, Bandi et
al. [1] provide a comparative study of existing CL strategies on cancer detection
datasets, reflecting shifts among three organs (breast, colon, and head-neck).
Similarly, Kaustaban et al. [15] simulate five domain incremental datasets by
changing stain composition in a colon cancer dataset (CRC) and benchmark
existing CL approaches. Some other works [7,29] benchmark popular CL ap-
proaches on less complex datasets such as MedMNIST. Further CL research
in digital pathology indicates that rehearsal-based strategies that require stor-
ing some past samples in a memory buffer tend to perform better compared to
others [1,15]. However, storing past samples may cause privacy violations [12],
which can be a major bottleneck of such CL approaches in medical applications.
A less concerning direction, storing features instead of actual images, refereed
as latent-replay (e.g., chest x-ray classification [26], Ultrasound cardiac view
classification [24]) is also explored. Besides the promising results from current
research, such a strategy is compromised by complexities in sharing features
across hospitals and large buffer requirements.

To address these limitations related to the sharing of medical data in histo-
pathology, we propose a novel, buffer-free CL approach that takes advantage of
a Gaussian Mixture Model (GMM) to encapsulate the traits of past training
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Fig. 2. Overview of proposed CL framework for digital pathology

domains, enabling feature generation for incorporation in subsequent training
sessions. We acquire real-world histological slides from different environments
and curate domain-incremental scenarios to show shifts in terms of stain, organ,
center, or a mix of those. An extensive evaluation is performed on three different
domain shift problems in digital pathology, i.e., (1) breast tumor detection across
different histological stains, (2) tumor detection across different organs, and (3)
tumor detection in the presence of heterogeneous types of shifts. For comparison,
we consider established buffer-free and buffer-based CL approaches.

2 Method

In the following, we provide the problem formulation and introduce the two key
novelties of our proposed CL framework: (a) generative latent replay and (b)
domain specific generators. Fig. 2 serves as overview of our proposed framework.

Problem formulation: The goal of GLRCL is to learn sequentially from
datasets containing domain shifts and without storing any samples from past
datasets while maintaining performance over previous datasets. Such an incre-
mental learning setting where the classification task is fixed, but domain shift
is observed over time, is referred to as continual learning under domain incre-
mental scenarios. Each dataset in the sequence is termed as a CL task here.
Formally, there is a sequence of tasks {T1, T2, ....}, where each task Tt has
training Dt and evaluation Et set for tumor classification. Here, the training set
Dt = {xt, yt} contains xt patches extracted from Whole Slide Images (WSIs)
and corresponding yt annotations for {1, ....C} classes. The training data of tth
task offers samples for learning in the current session (tth domain) only and is
not accessible in past or future training sessions. Meanwhile, the testing data
from each task is available throughout the sessions. The CL classification model
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Mt(·) is initialized with model parameters θt−1 learned during the immediate
past session. Mt(·) then aims to mitigate catastrophic forgetting, by learning
the model parameters θt that minimize the loss (L) over all the past domains. In
the proposed GLRCL framework, Mt(·) learns jointly on the training data from
the current domain Dt and latent vectors produced from a pool of generators
representing past domains.

a) Generative latent replay: The early layers of deep learning models are
responsible for extracting low-level features from input images. After undergoing
pre-training on large datasets, these layers’ weights become stable and can be
effectively reused in various applications, including medical image processing
tasks. On the other hand, layers close to the classification head tend to extract
discriminative features tailored to specific classes and domains, and fine-tuning
them is often essential for maximizing accuracy. We propose to extract rich low-
level features from an early layer, coined as generative-replay-layer, and learn
generators from these activations. Thus, rather than storing input histopathology
samples in an external memory in raw or latent form; we just store the generators
and hence avoid possible privacy violation. At the arrival of any new domain,
separate generators are learned on tumor and healthy images and then the pool
containing generators is updated with these newly learned generators. These
generators then can be used to produce latent representations mimicking past
domains which serve as replay features. In each Adam-based mini-batch training,
patterns coming from the input layer are concatenated with the replay features
at the generative-replay-layer on the mini-batch dimension.

argmin
θt

L
(
Mt(θ̄,θt)((xt, yt)⊕ (Gt−1(ft−1), yt−1)⊕ . . . ),∀t > 0

)
where, θ̄ refers to freezed parameters, Gt−1(·) represents (t− 1)

th domain gen-
erator, and ⊕ indicates concatenation operation. To uphold the stability of the
generated features and the validity of stored generators, we propose freezing all
layers beneath the generative-replay-layer and allowing the layers above to learn
autonomously, i.e., the forward and backward passes are performed only on layers
after generative-replay-layer. Our approach offers applicability to a wide range
of encoder models. We use a pre-trained ResNet50 [11] as our feature extraction
model. Then fully connected layers and a classification head are added.

b) Domain specific generators: For each of the encountered domains hav-
ing a unique tuple of attributes in set {stain, organ, center}, we propose to
maintain light-weight generators, separately for each class. The generators are
learned from extracted image features and hence cannot be used to produce
raw images, ensuring data privacy. Moreover, this opens an avenue for restricted
data-sharing in terms of distribution parameter sharing. We utilize GMMs as the
feature generators. GMMs are well known for their diverse range of data mod-
eling capabilities, also evidenced by their popularity in encoding latent features
in deep layers [2,27], encoding raw images [23], features [28,30], etc. Further,
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they typically require fewer parameters (only mean and variance) compared to
any deep neural network-based generators which would otherwise require storing
the entire model weights. The cost-effective generators are particularly advanta-
geous, especially in CL scenarios involving multiple distinct domains that require
a large number of generators. Specifically, during training, we extract features
from the last batch normalization layers of the ResNet50 model. Then, at the
end of each training session, the accumulated features ft ← BN(xt) are used to
learn domain-specific GMMs, for each class. For tth domain and ith class, the
generator Gi

t(·) posses K multivariate Gaussians {g1, g2....gK} in the mixture
with probability density function (PDF) as:

p(ft) =
K∑

k=1

wk ·N (ft | µk, Σk); µk =
1

Nt

Nt∑
n=1

fnt ; Σk =
1

Nt

Nt∑
n=1

(fnt −µk)(f
n
t −µk)

T

where, Nt denotes the number of samples in tth domain for a particular class,
N (f | µk, Σk) represents PDF of each kth Gaussian component gk with mean
µk and covariance matrix Σk, and wi is a positive weight associated with kth

Gaussian such that
∑K

k=1 wk = 1. For a given value of K, the parameters µk, Σk

for k ∈ {1, 2...K} of mixture distribution are estimated via expectation maxi-
mization [6]. The fitted mixture model Gi

t allows to generate random samples
reflecting the ith class and tth domain. Here, the optimal value of K is learned
using the Bayesian Information Criterion (BIC) [9]. The candidate values for K
lie in range 1 and a given upper limit Kmax , and the one that minimizes BIC is
selected. Finally, the learnt generators from tth domain are then added to GMM-
pool containing all past generators Gi

t for i ∈ {1, . . . , C} and t ∈ {1, . . . , t− 1}.

3 Experimental Setup

(1) Datasets: Various datasets characterizing shifts in staining, organ, and
center are curated. We outline these datasets in Table 1. Please note that train-
test split does not follow slide-level split except for the organ shift datasets.

Stain shift (SS): The data was acquired at center C1 and includes healthy
and tumorous breast tissue. Experienced pathologists carefully annotated breast
cancer regions in detail for Hematoxylin and eosin (HE), Cytokeratin (CK5/14),
and Cluster of differentiation (CD8) stained WSIs. For preprocessing, we se-
lected foreground tissue regions using the CLAM preprocessing pipeline [21].
As stainings highly vary in colorization, we manually adjusted tissue detection

Table 1. Details of shift types and available datasets used in experiments

Details of shift Datasets #Train patches #Test patches
SS: Staining varies,

organ (breast), center (C1) HE, CD8, TRI, CK5/14, PAS 1510, 3370,4706, 4704, 3372 1000 each

OS: staining (H),
organ varies, center (C2),

Breast, Colon, Liver, Lung, Ovary,
Pancreas, Prostate, Stomach, Uterus

1704, 1982, 1694, 1472, 1338,
1308, 1916, 1836, 1900 600 each

HS: Heterogeneous CD8/breast/C1, HE/breast/C3 (BRACS),
H/colon/C2, HE/colon/C4 (CRC)

3370, 6096,
1982, 6600 600-1000
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Table 2. Best performance result in buffer-based / buffer-based with low buffer /
buffer-free categories indicated in red / blue / green, respectively. Bold: Upper bound.

Exp.→ SS OS HS
Approach BWT↑ Acc.↑ ILM↑ BWT↑ Acc.↑ ILM↑ BWT↑ Acc.↑ ILM↑

N
on

-C
L Naive -31.09 71.72 77.54 -7.03 79.41 82.72 -38.80 66.92 73.88

Joint – 98.04 – 95.46 – – 86.73 –
Cumulative -0.30 98.00 98.18 8.12 95.80 94.99 -0.07 88.67 93.77

B
uff

er
-b

as
ed

GEM -0.83 86.64 83.87 -1.77 88.70 89.02 -19.63 69.11 80.93
AGEM 5.63 91.64 89.83 -2.18 87.39 89.38 -20.07 69.31 80.53

ER -1.62 96.80 97.10 7.83 96.22 94.32 -2.60 90.01 93.53
LR -1.06 96.72 97.20 5.99 94.61 93.71 -2.17 87.54 92.89
ER* -3.42 94.12 95.87 2.65 95.50 93.64 -8.08 89.07 91.94
LR* -2.41 95.28 95.97 5.97 93.76 92.87 -5.02 85.97 91.54

B
uff

er
-f
re

e SI -26.86 78.56 79.83 -6.77 82.31 84.51 -35.92 70.71 75.45
LwF -28.99 70.00 78.28 -4.15 83.44 84.45 -30.32 74.72 77.50
EWC -27.16 77.56 80.15 -9.12 81.00 82.69 -39.42 66.41 73.54

Proposed -1.65 96.20 96.76 6.43 94.48 93.23 -2.58 87.38 92.66

thresholds. Each annotated region was tiled into 512 × 512 px patches at 40×
magnification. Since we obtained 5× more patches from CK5/14 and CD8 com-
pared to HE and to include more inter-stain variation, we used half of both
datasets and augmented them using Cycle-GAN (cGAN) into artificial trichome
(TRI) and periodic acid-Schiff (PAS) stainings, respectively.

Organ shift (OS): This dataset from center C2 comprises 20 tissue microar-
ray (TMA) cores, occupied with tissue of 9 organs in hematoxylin (H) staining.
TMA cores were systematically sampled from a diverse cohort of patients and
contained cancerous and healthy tissue. The same preprocessing strategy as in
stain-variation is applied here. We split datasets spot-wise to prevent data leak-
age at both, patient and tissue level.

Heterogeneous shift (HS): In addition to homogeneous kinds of shift (i.e.,
either SS or OS), we also consider heterogeneous shifts involving a mix of different
stains, organs, and centers, simultaneously. Specifically, we consider the "CD8"
dataset from the SS sequence (stain:CD8, organ:breast, center:C1), the "Colon"
dataset from the OS sequence (stain:H, organ:colon, center:C2), a subset from
the BRACS dataset [4] (stain:HE, organ:breast, center:C3), and a subset from
the CRC dataset [14] (stain:HE, organ:colon, center:C4). All these datasets are
curated such that they comprise only normal and tumor classes.

(2) Comparable Methods: Both non-CL and CL approaches are considered
for comparison. The non-CL approaches include (a) lower-bound performance
obtained by a naive method (i.e. training dataset of the current task is used only)
and (b) upper-bound performance by a joint method (i.e. training datasets from
all tasks are used) and a cumulative method (training datasets are accumulated
from seen tasks). For CL, we consider frequently used approaches in the two
categories as (a) buffer-based (i.e. a few past samples are stored in raw or latent
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form) and (b) buffer-free (no storing of past samples). In the buffer-based cate-
gory, we consider GEM [20], A-GEM [5], ER [25], and LR [22]. In the buffer-free
category, EWC [17], SI [31], and LwF [19] are considered.

(3) Implementation details: In the following, we describe the training strate-
gies of our models and the included evaluation metrics.

cGAN pre-training: For cGAN pre-training we extracted patches in the
scale of 512 × 512 px from TRI and PAS stained WSIs as provided by the
KPMP database [16]. Regarding hyperparameter settings, we followed the liter-
ature [3] and performed a grid search around an order of magnitude around the
base parameters. We selected the best-performing model by visually inspecting
the derived stain augmentations, resulting in the number of iterations of 30 ∈
[20, 30, 40] epochs and a learning rate of 1.5e−4 ∈ [1.0e− 3, 1.5e− 3, . . . , 1e− 5].
To prevent any data leakage, we used unlabeled excess tiles from CK5/14 and
CD8 from our stain-variation WSIs to train our cGAN using target domains
from the KPMP dataset. A total of 5000 images were used for training. The
training and inference time was approximately 8 hours per stain.

CL training: We selected the hyperparameters according to common CL
evaluation schemes. For all comparable methods, we used the CL benchmark
library Avalanche4. We used AdamW as an optimizer and used learning of 1e−03.
Images were resized to 256× 256 px and batched with a size of 64. All methods
used a pre-trained ResNet50 model initialized with ImageNet weights. After
the last batch normalization layer in ResNet50, 5 fully connected layers {512,
256, 128, 64, 32} are added. For all the experiments, we keep Kmax = 10. All
experiments were conducted using an Nvidia A100 GPU, with training sessions
typically completed within a maximum duration of 4 hours across all approaches.

Evaluation metrics: The performance is assessed using the classification
accuracy metric. For any experiment with T tasks in sequence, we get a train-test
matrix A of size T × T where the cell value Aij represents accuracy on jth task
after training up to ith task. This matrix can be used to compute various metrics
to compare approaches. We consider popularly used metrics in CL literature,
specifically Backward Transfer (BWT) for measuring forgetting (Eq. 3 in [8]),
Incremental Learning Metric (ILM) to measure incremental learning capability
(Eq. 2 in [8]) and average accuracy across all the tasks after learning the last task
(Eq. 2 in [20]). For all these metrics a higher positive value indicates superiority.

4 Results and Discussion

Within each shift scenario (SS, OS, HS), a random ordering of the available data
is created and utilized for evaluating different approaches (see Table 2). Our
supplementary file provides results on further random orderings (showing same
trends) and further discussion on individual evaluation metrics. As expected,
"cumulative" and "joint" represent the upper, and "naive" indicates the lower
4 https://avalanche.continualai.org/
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Fig. 3. Performance over time for different shifts (SS, OS, HS) and for buffer-based
(upper row) versus buffer-free CL approaches + non-CL (lower row).

bound. For all three evaluation metrics, there is a large performance gap be-
tween buffer-based approaches and buffer-free approaches across all experiments
(SS, OS, and HS). This is in line with previous findings that rehearsal-based
approaches handle forgetting in medical data better [18,7]. In the buffer-based
category, ER and LR approaches largely offer the best results. Our buffer-free
GLRCL approach (green) achieves performances slightly worse than the best-
performing buffer-based approaches with a large buffer (red). However, when
reducing the buffer size by 1/4 (see ER* and LR*), a significant performance
drop is observed (best results in blue), resulting in performance values mostly
below our GLRCL approach in all experiments. This shows that the perfor-
mance of buffer-based approaches gets compromised when reducing the buffer
size. When comparing with existing buffer-free CL approaches, we observe that
our novel GLRCL method clearly outperforms these methods by a large margin
across all three domain shift conditions. Further, in terms of accuracy (Acc. and
ILM), HS performs generally worse than SS and OS, due to the multitude of
variations (stain, organ, center shifts) encountered in HS.

To analyze performance over time, we report the average accuracy of the
cancer classification tasks after each training session for each of our three do-
main shift experiments (see Fig 3). The first row shows a comparison of our
GLRCL approach (green, "proposed") with buffer-based, and the second row
with buffer-free and non-CL approaches, respectively. These graphs clearly show
that GLRCL significantly outperforms the buffer-free approaches and performs
similarly to the buffer-based approaches, creating a new CL benchmark and an
alternative to buffer-based CL approaches for digital pathology.
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5 Conclusion

Our novel privacy-aware CL approach for histopathology tumor detection in do-
main incremental scenarios outperforms existing buffer-free CL approaches by
a large margin, and mitigates data privacy concerns compared to image-storing
buffer-based CL methods with comparable performance. Our work significantly
advances privacy-aware tumor detection from histology data, pushing the bound-
aries of current CL strategies under privacy preservation. For future work, we
investigate for a better choice of latent representations so that the learned GMM
better captures the domain and class differences. Additionally, we aim for a sin-
gle generator with a dynamic update mechanism triggered with drift detection
module which eventually deals with reoccurring and overlapping domains.
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