
Algorithmic Fairness in Lesion Classification by
Mitigating Class Imbalance and Skin Tone Bias

Faizanuddin Ansari1, Tapabrata Chakraborti2, and Swagatam Das1

1 Indian Statistical Institute, Kolkata, India
faizanuddin_r@isical.ac.in, swagatamdas19@yahoo.co.in

2 The Alan Turing Institute, University College London, London, UK
tchakraborty@turing.ac.uk, t.chakraborty@ucl.ac.uk

Abstract. Deep learning models have shown considerable promise in
the classification of skin lesions. However, a notable challenge arises from
their inherent bias towards dominant skin tones and the issue of imbal-
anced class representation. This study introduces a novel data augmen-
tation technique designed to address these limitations. Our approach
harnesses contextual information from the prevalent class to synthesize
various samples representing minority classes. Using a mixup-based al-
gorithm guided by an adaptive sampler, our method effectively tack-
les bias and class imbalance issues. The adaptive sampler dynamically
adjusts sampling probabilities based on the network’s meta-set perfor-
mance, enhancing overall accuracy. Our research demonstrates the effi-
cacy of this approach in mitigating skin tone bias and achieving robust
lesion classification across a spectrum of diverse skin colors from two dis-
tinct benchmark datasets, offering promising implications for improving
dermatological diagnostic systems.
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1 Introduction

The field of skin lesion classification using deep learning models has shown great
promise in achieving high performance in recent years. However, a significant
challenge these models face is the presence of bias towards dominant skin tones
and imbalanced class representation within datasets. This is because skin lesions
and cancer occurs more on skin with less melanin, and thus is more prevalent
among patients with pale skin, compared to darker skin. This has given rise to
benchmark skin cancer image datasets that are biased towards samples from
white patients, which is statistically proportionate, but causes training imbal-
ance for machine learning algorithms. For a machine learning algorithm to be
equitable and generalisable, it needs to perform robustly across demographics in
a fair manner, because skin cancer can happen for darker skin, though lesser in
number, but no patient can be treated as an outlier. Hence this is an open per-
sisting problem within the area of machine learning fairness and health equity,
which we address in this work.
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Researchers have proposed various methods to handle imbalanced datasets.
The methods mainly used for handling imbalances in the skin lesion dataset
are widely classified into sampling-based, reweighing, and augmentation-based
methods. The reweighing-based methods include RW (Reweighing) [7], Focal-
loss [9], CBRW (Class balanced reweighing) [2], and Balanced Softmax [13],
are some of the state-of-the-art reweighing based methods used to handle im-
balance. This genre of approach focuses on assigning different weights to each
data point during training. While effective in some cases, reweighing techniques
can be sensitive to the chosen weight function and might not always capture
the true importance of each data point. Other methods include using modified
sampling techniques, such as oversampling the under-represented categories. We
can further divide this oversampling and undersampling technique into instance,
class-balanced [14,10], reverse, and progressive-balanced sampling. Oversampling
techniques, while seemingly intuitive, can introduce redundancy and lead to the
model overfitting on the minority data. Undersampling, on the other hand, dis-
cards valuable information from the majority class, potentially affecting overall
model performance. Another line of work focuses on augmentation-based tech-
niques, such as Mixup [17], CutMix [16], and Balanced Mixup [3], aim to reg-
ularize training data by mixing instance and class-based sampling. Rebalanced
Mixup (Remix) [1] gives greater weight to labels of minority classes, improving
generalization. Another technique, CMO [11], incorporates minority class im-
ages into majority class backgrounds. Methods like CutMix and CMO improve
performance on tasks like CIFAR and ImageNet by replacing image parts with
patches from others. However, in medical datasets, such as skin cancer detection,
they often reduce accuracy by losing crucial diagnostic information [12]. These
methods also lack dynamic adaptation during mixing, limiting their effectiveness
on unseen data.

Moreover, not many studies have been done on mitigating the racial skin-
tone bias in lesion classification. Groh et al. [4] study highlights a bias in skin
tone classification using convolutional neural networks (CNNs). CNNs trained
on datasets with limited skin tone diversity perform better on images with skin
tones similar to those in the training data. This leads to lower accuracy for
individuals with darker skin tones, which are often underrepresented in current
datasets, thus giving rise a serious problem in machine learning fairness and
health equity.

By critically evaluating strengths and limitations discussed above, our work
develops a more robust approach for handling imbalanced datasets and inherent
color-tone bias in skin lesion classification simultaneously, ultimately leading to
more accurate and fair models for skin lesion diagnosis.

We propose a novel approach utilizing a mixup-based algorithm guided by
an adaptive sampler. This method tackles these issues on two fronts:

1. Mixup-based Algorithm: We augment and create new training data points
that blend features from existing samples by leveraging the mixup technique.
This process encourages the model to learn more robust representations that
are less susceptible to biases based on skin tone.
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2. Meta Adaptive Sampler : We introduce an adaptive sampling strategy that
dynamically adjusts the selection probabilities of training data during each
iteration. This strategy prioritizes samples that pose more significant chal-
lenges to the network based on their performance on a dedicated meta-
validation set. This targeted approach fosters more balanced learning and
improves overall classification accuracy.

Our research demonstrates significant progress in mitigating skin tone bias within
the model through this combined strategy. This translates to achieving robust
lesion classification performance across a diverse range of skin colors on multiple
datasets. These findings hold promising implications for developing more accu-
rate dermatological diagnostic systems, that work across patient demographics
with equity and fairness.

2 Methodology

In this section, we first present some concepts relevant to this work, and then
introduce the proposed method.

2.1 Preliminaries

Sampling Strategy Sampling strategies of training data refer to techniques
used to select and represent data instances in deep learning models, particularly
when dealing with imbalanced datasets. These strategies aim to mitigate the
underfitting of minority classes and prevent the overfitting of majority classes.
Modified sampling strategies can include oversampling under-represented cate-
gories, leading to counter-productive outcomes like repeatedly showing the same
training examples to the model. Given the provided training set notation, one
can describe data sampling strategies mathematically as: given a training set
D = {(xi, yi), i = 1, ..., N} for a multi-class problem with K classes where each
class k contains nk examples and

∑K
k=1 nk = N , we can describe some common

data sampling strategies mathematically with the probability pk, associated with
the particular class as pk = ( (|nk−ψ|)γ∑K

l=1(|nl−ψ|)γ+ϵ
), where different values of γ and ψ,

guides the different sampling strategies, where γ ∈ [0, 1], and ψ, some statistic
related with the examples in the dataset and ϵ added to avoid divide by zero
error. γ = 1, and ψ = 0 forms the instance sampling strategy, followed by γ = 1,
and ψ = N forms reverse sampling strategy. However, such static strategies that
fix the sampling probability at the start and use it throughout training are not
feasible.
Mixup The mixup technique constitutes a data augmentation approach wherein
synthetic training instances are created through the linear interpolation between
pairs of authentic examples alongside their corresponding labels. The formula for
mixup is:

x̂ = λx1 + (1− λ)x2 (1)

ŷ = λy1 + (1− λ)y2, (2)
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Fig. 1. Our Proposed Framework

where λ is a random variable sampled from a Beta distribution B(α, α). One un-
derlying concept behind mixup is that by employing linear interpolation among
data points, we encourage the network to smoothly and seamlessly transition
between data points, minimizing abrupt changes. Mixup improves deep neural
network performance by enhancing robustness to adversarial attacks and pro-
moting better generalization through data-adaptive regularization, ultimately
leading to more accurate and reliable model predictions.

2.2 Proposed Method

Let us consider the K-class supervised classification problem with a training
dataset D = {(xi, yi)}Ni=1, where N is the total number of datapoints, xi is
the ith image datapoint and yi is the corresponding category label, such that
yi ∈ L = {1, 2, 3, . . . ,K}. Let f denote the classifier with parameter θ, which we
need to train. The training set D is imbalanced with n1 > n2 > · · · > nK . Along
with this we also have a meta set, M = {(xi, yi)}Mi=1, with total M datapoints.
And also have heuristic function H : M → {h1, h2, · · · , hK}, which gives heuris-
tics corresponding to each class. The heuristic value increases in proportion to
the degree of representation refinement achieved by the network or the level of
accuracy attained by the class. This research proposes a novel imbalanced class
learning approach that leverages a synergistic combination of instance sampling,
adaptive sampling, and Mixup augmentation. Instance sampling ensures that
all classes have a base representation during training. Adaptive sampling dy-
namically adjusts sampling probabilities based on a heuristic function utilizing
a meta-set. This allows the model to focus on informative minority class exam-
ples. At the same time, the heuristic function, informed by the network’s state
and the meta-set, guides the sampling process to prevent overfitting the majority
classes.

First, let us define the samplers to sample data points. The first sampler we
will be using is the instance sampler where the probability of sampling from the
Dataset D depends on the actual number of samples in the different classes,
that is, the probability of choosing samples from the particular class k, pk = nk

N ,
where the Instance sampler denoted as I(D, 1). This sampling approach will help



Title Suppressed Due to Excessive Length 5

to leverage the contexts present in the majority samples to enhance the limited
context of the minority samples during the augmentation process.

The other sampler we will be using is the adaptive sampler A(D,H), where
the probability of sampling from the particular classes, depends on the heuristic
calculate corresponding to each class using the meta-set M, using the heuris-
tic function as H(M, fθ) = {h1, h2, · · · , hK}, the calculate heuristic depend on
the state of the network f and the meta set M. The probability correspond-
ing to each class for sampling calculated as pk = 1 − hk∑K

i=1 hi
. This technique

dynamically adjusts the sampling probability based on a ‘heuristic’ function.
This function considers the current state of the learning model and a separate
‘meta-set’ of data. The adaptive sampler refines the sampling process based on
the model’s learning progress. It can potentially identify classes still challenging
for the model to learn, even within the minority class, and prioritize those for
further training. This can lead to more focused learning and faster improvement
in difficult classes.

For our augmentation method, the data is first sampled from instance sam-
pler, (xiI , yiI ) ∼ I(D, 1) and adaptive sampler, (xiA , yiA) ∼ A(D, fθ), and com-
bined using mixup as follows:

x̃IA = λxiI + (1− λ)xiA , (3)

ỹIA = λyiI + (1− λ)yiA . (4)
This heuristic augmentation provides a better representation of the minority
class by not neglecting classes that are not well-learned but instead striving to
make the accuracy of such classes comparable to that of the majority classes
using samples from the adaptive sampler. Furthermore, the data augmentation
technique cleverly leverages the rich context found in abundant examples (major-
ity samples) using an instance sampler to enhance the limited context surround-
ing the rarer examples (minority samples). By incorporating these additional
details in the creation of new training data, we can significantly enhance our
model’s understanding of minority samples.

The Meta-set we are using does not necessarily need to belong to the same
dataset as the training data. It might belong to a different dataset with varying
skin tones, or it could be a combination of data similar to the training samples or
samples with different skin tones. Thus, this data is not directly involved in the
training samples used by the network for learning, but it will help to refine the
heuristic. It will affect how the samples are chosen during augmentation, thus
indirectly modifying the decision boundaries without exposing those samples to
the network during training. The proposed framework is illustrated in Figure 1.

3 Experimental Analysis

3.1 Datasets, training protocol, comparison and evaluation metrics.

Dataset Used We have used the Asan Dataset [5], mainly containing patients
from the Asia with darker skin tone, and the ISIC-2018 dataset [15] contain-
ing mainly caucasian patients with pale skin tone. We divide the Asan Dataset
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training set into two parts: 10% of the images are used as a Meta-set, while
the remaining 90% are used for training. The provided test-set images are used
for testing. ISIC-2018 skin lesion classification challenge adopted the HAM10000
dataset (HAM) as a training dataset. The HAM dataset is one of the largest and
most used skin image datasets publicly available in the ISIC archive. It consists of
10,015 skin lesion images in seven skin lesion types. The test set comprises 1512
skin lesion images without published labels. The only method for performance
evaluation is to upload the predicted results to the ISIC website. So, we divided
the training set into three splits in the ratio 70:10:20 (train:meta:test). For both
datasets, we convert the images to a size of 100x100px. The Asan dataset has 12
classes, and the ISIC-2018 dataset has 7. The classes both data have in common
are five, namely melanoma, melanocytic nevus, basal cell carcinoma, actinic ker-
atosis, and dermatofibroma.
Training Details We utilize the CNN ResNeXt-50 (as used in [8]) for image
classification. We trained a network using stochastic gradient descent (SGD)
with a batch size of 128 for 100 epochs, starting with a learning rate (LR) of
0.01 that decayed if metrics didn’t improve (via Reduce LR on plateau). We used
early stopping if the LR reached 0, and set α to 0.2 for mixup (B(α, α)). We eval-
uated the performance of each model using task-specific metrics on a separate
validation set, and we retained the best-performing model for further analysis.
The code is available at: https://github.com/fa-submit/Submission_M.
Comparison Methods Not much work has addressed both the imbalanced
problem and skin-tone bias together. To compare, we selected cost-sensitive
methods: Reweighing-based methods like simple reweighing (RW) (weighting by
the inverse of class frequencies), focal loss (FL), and class balanced reweighing
(CBRW). We also considered resampling-based methods such as class balanced
sampling (CBS), reverse sampling (RS), and progressive sampling (PS) - a com-
bination of CBS and RS. Additionally, we examined Class balanced retraining,
which adjusts sampling probabilities using the inverse frequency of each class
raised to the power of (1/8)th. We also evaluated balanced mixup (BalMixup)
and mixup-based methods.
Evaluation Metrics We measure balanced accuracy (Bacc) (i.e. average recall
of all classes). The macro-F1 score reflects improvements in smaller categories.
We also include the geometric mean (GM) score. The heuristic used to determine
sampling probabilities is calculated using per-class accuracy (i.e., for example,
h1 represents the accuracy of class 1). We assess model fairness using multi-class
equalized odds (Eodd) and equalized opportunity (Eopp) [6]. Eopp0 evaluates
the disparity in the True Negative Rate, Eopp1 evaluates the disparity in the
True Positive Rate, and Eodd sums the disparities in the True Positive and False
Positive Rates.

3.2 Results and Discussions

To demonstrate the effectiveness of our proposed model, we conducted several ex-
periments. In the initial experiment, we aimed to address the existing imbalance
in the dataset while enhancing performance. We accomplished this by training

https://github.com/fa-submit/Submission_M
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the ResNeXt-50 model using our proposed framework with the Asan dataset,
comprising 12 classes. Subsequently, we compared its performance with other
methods (as shown in Table 1) using the test set of the Asan dataset. Our find-
ings indicate that our model exhibits superior performance compared to other
methods. Additionally, when tested on the ISIC-2018 dataset, it demonstrates
better performance compared to alternative methods. However, it is important to
note that the ISIC-2018 dataset only shares 5 classes with the Asan dataset. To
address this limitation, we utilized another subset of the Asan dataset contain-
ing the 5 common classes with the ISIC-2018 dataset. Furthermore, to showcase
the generalizability of our trained model across various skin tones, we evalu-
ated its performance on the entire ISIC dataset. Our method outperforms other
methods, underscoring its superior generalizability. The lower value of fairness
metrics in Table 2 highlight our method’s predictive fairness compared to oth-
ers, demonstrating its effectiveness. We demonstrate the performance of our

Table 1. The ResNeXt-50 network was trained on the Asan dataset and evaluated on
two sets: one with all 12 classes and another with 5 classes common to the ISIC-2018
dataset. The evaluation metrics include F-1 score (in %), GM (in %), and Bacc (in %).

12 Classes 5 Classes

Method
Tested on the Asan

Datasetset
Tested on the

ISIC-2018 Dataset
Tested on the Asan
Dataset Test Set

Tested on the
ISIC-2018 Dataset

F1-score GM Bacc F1-score GM Bacc F1-score GM Bacc F1-score GM Bacc

RW 59.18 74.78 57.89 8.92 25.06 26.71 79.75 86.3 78.48 28.71 58.86 40.12
FL 57.04 73.4 55.88 7.47 22.22 21.19 77.83 85.43 77.15 27.8 59.82 41.67

CBRW 58.62 74.72 57.88 8.04 23.63 23.75 79.84 86.45 78.72 33.37 59.35 40.95
CBS 58.13 74.11 56.94 7.96 23.95 24.52 82.38 88.12 81.46 22.67 55.93 36.79
RS 59.56 74.95 58.14 7.54 22.28 21.2 81.26 87.07 79.59 31.95 62.4 44.32

Cbrt 58.51 74.64 57.68 8.15 23.44 23.49 79.67 86.68 79.01 29.96 60.68 42.21
PS 56.91 73.7 56.33 7.81 25.33 27.36 81.1 87.61 80.54 26.67 56.81 37.62

BalMixup 60.04 75.91 59.62 9.77 26.64 30.18 81.10 87.25 79.58 34.25 60.91 42.63
Mixup 56.09 72.39 54.36 8.49 25.03 26.67 82.34 88.04 80.92 25.61 55.98 36.24

Ours 61.05 77.54 62.16 10.36 28.97 35.5 79.84 86.95 79.53 40.57 65.33 47.81

Table 2. Fairness results of different methods trained on the ASAN dataset (5 classes),
tested on a combined ASAN test set and ISIC-2018 dataset.

Method(→)
Metric(↓) RW FL CBRW CBS RS Cbrt PS BalMixup Mixup

Ours
(Meta-Set
10% Asan)

Ours
(Meta-Set
10% Asan

+ 10% ISIC)

EOpp0 0.115 0.087 0.108 0.079 0.115 0.083 0.111 0.100 0.105 0.075 0.055
EOpp1 0.489 0.355 0.378 0.353 0.489 0.386 0.429 0.37 0.447 0.317 0.336
EOdds 0.298 0.185 0.19 0.186 0.298 0.200 0.241 0.164 0.185 0.153 0.146

main proposition regarding the use of the meta-set to regulate the sampling of
samples in Table 3. We present various compositions of the meta-set and the
corresponding results on the Asan test set and the ISIC-2018 dataset. Since the
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Table 3. The table presents the ResNeXt-50 Network trained on the Asan Dataset,
showcasing how results (in %) change with varying compositions of the Meta-Set.

Composition of Meta-Set
Tested on the Asan

Data Test Set
Tested on the ISIC-2018

Dataset

F1-score GM Bacc F1-score GM Bacc

10% of Asan Dataset 79.84 86.95 79.53 40.57 65.33 47.81
10% of ISIC Dataset 74.54 83.01 73.62 34.25 59.55 39.98
10% of ISIC Dataset+10% of Asan Dataset 82.34 88.34 81.62 40.60 66.00 49.11
20% of ISIC Dataset 73.31 82.69 72.81 33.37 59.91 41.37
30% of ISIC Dataset 74.81 83.87 75.17 34.95 61.98 43.58

images in the meta-set are not directly used for training, the entire ISIC dataset
can be used for testing. From the table, it is evident that the optimal compo-
sition involves utilizing both the Asan and ISIC-2018 datasets in the meta-set,
resulting in an improvement in performance of nearly 2% in terms of Bacc for
both test cases. Additionally, there is an enhancement of approximately 3% in
the F-1 score for the Asan dataset when compared with the meta-set containing
only Asan dataset images, indicating an improvement in the performance of the
minority class. These results show that performance can be enhanced by using a
small number of images in the meta-set, even without directly including images
of different skin tones in the training set. Regulating the sampling process aids
in better augmentation, resulting in improved and more generalizable decision
boundaries. We also computed results on the ISIC-2018 dataset using a subset

Table 4. The results of the ResNeXt-50 network trained on the ISIC-2018 dataset are
evaluated using F-1 score (in %), GM (in %), and Bacc (in %).

Method
Tested on the ISIC-2018

Dataset Test Set
Tested on the
Asan Dataset

F1-score GM Bacc F1-score GM Bacc

RW 69.08 81.61 71.53 38.9 55.97 35.98
FL 67.43 78.94 66.96 21.24 48.97 29.07

CBRW 69.27 81.94 71.6 31.17 52.18 32.53
CBS 62.48 74.13 59.79 22.15 50.48 30.67
RS 62.48 74.13 59.79 30.61 53.19 33.84

Cbrt 60.73 73.28 58.6 17.85 44.32 24.23
PS 62.61 74.51 60.1 25.88 51.17 31.63

BalMixup 65.89 75.90 62.77 14.95 41.97 21.85
Mixup 70.32 78.92 66.45 22.71 47.32 27.10

Ours 65.86 83.6 74.79 38.77 57.4 38.77

of 5 classes common with the Asan dataset. We used the trained network to
evaluate results on the Asan dataset and the ISIC-2018 test set (Table 4). Our
method performs well in both test cases, with nearly a 3% improvement in both
Bacc and GM, albeit with a slight dip in the F-1 score compared to RW and
Mixup. Overall, our method aims for balanced performance across all classes,
enhancing generalization to unseen data, thus showing better performance in
unseen skin-tone images than other methods. Fairness metrics are excluded in
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this case because the ISIC test set’s minority class has far fewer samples than
the ASAN dataset’s minority, making estimates for the underrepresented group
potentially unreliable.

4 Conclusion and future work

In conclusion, this study presents an innovative data augmentation technique
that addresses the challenges of skin tone bias and imbalanced class distribu-
tion in deep learning models for skin lesion classification simultaneously through
a novel adaptive mixup sampling strategy that uses cross sampling between
the diverse skin tones in a judicious manner. To demonstrate the efficacy of
our method across different skin tones and class imbalance (skin cancer is more
common among caucasian patients and hence usually data available is biased to-
wards that patient demographic), we choose two benchmark datasets: ISIC-2018
with mostly caucasian patients and Asan dataset with mostly Asian patients.
Our results showcase the accuracy of our method compared to several recent
competing approaches, and thus presents a classifier that can generalise across
patient demographics with fairness and equity, and hence has the potential of
practical translation across borders in clinical decision support systems (CDSS).

Disclosure of Interests. The authors have no competing interests in the paper as
required by the publisher.
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