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Abstract. Accurately predicting the 5-year prognosis of lung cancer
patients is crucial for guiding treatment planning and providing opti-
mal patient care. Traditional methods relying on CT image-based cancer
stage assessment and morphological analysis of cancer cells in pathology
images have encountered challenges in terms of reliability and accuracy
due to the complexity and diversity of information within these images.
Recent rapid advancements in deep learning have shown promising per-
formance in prognosis prediction, however utilizing CT and pathology
images independently is limited by their differing imaging characteris-
tics and the unique prognostic information. To effectively address these
challenges, this study proposes a novel framework that integrates prog-
nostic capabilities of both CT and pathology images with clinical in-
formation, employing a multi-modal integration approach via multiple
instance learning, leveraging large language models (LLMs) to analyze
clinical notes and align them with image modalities. The proposed ap-
proach was rigorously validated using external datasets from different
hospitals, demonstrating superior performance over models reliant on vi-
sion or clinical data alone. This highlights the adaptability and strength
of LLMs in managing complex multi-modal medical datasets for lung
cancer prognosis, marking a significant advance towards more accurate
and comprehensive patient care strategies. The code is publicly available
on https://github.com/KyleKWKim/LLM-guided-Multimodal-MIL.

Keywords: Survival Prediction · Multi-modality · Multiple Instance
Learning · Large Language Model · Lung Cancer.
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1 Introduction

Recently, with advancements in early diagnosis and treatment of cancer, the
survival rates for cancer patients have seen a gradual increase. For non-small
cell lung cancer, the likelihood of surviving more than 5 years post-diagnosis
was previously very small, under 20%. However, with appropriate surgery or
treatment, this survival rate can soar to over 60% [7,12]. Thus, accurately pre-
dicting prognosis and determining the risk for cancer patients to provide optimal
treatment options is very important.

Treatment for lung cancer patients is determined depending on the stage, the
type of carcinoma, and other patient-specific circumstances. The TNM stage,
which is derived from the analysis of CT image and biopsy for pathological ex-
amination, plays the most representative role in prognosis determination, where
T, N, and M stages refer to the size or direct extent of the primary tumor, the
degree of spread to regional lymph nodes, and the presence of distant metastasis,
respectively [1]. However, the translation of key image-based cancer features into
simple text-based clinical information has led to a loss of image domain infor-
mation. Therefore, accurate precision medicine should consider not only TNM
stage information but also CT image analysis to utilize the tumor’s morphologi-
cal characteristics, as well as the properties of cancer cells visible in histopatho-
logical images [13].

To address the above problems, research attempts to assess the condition of
cancer patients and predict their prognosis using not only clinical information
but also CT and histopathological images. Recent developments in deep learn-
ing technology have demonstrated its efficacy in automated quantitative image
analysis. Research using the vision transformer (ViT) [3,5] model for CT-based
overall survival prediction have achieved an AUC of 0.78 [9]. Other research in-
corporating non-image clinical information alongside CT images has shown an
AUC of 0.76 [21]. The first attempt to predict prognosis using pathology images
through deep learning was by DeepConvSurv [22], achieving an AUC of 0.64.
Although this was considered low, it marked the first step and set the baseline
for future models. Following this, DeepCorrSurv [20] introduced a multi-modal
approach that included molecular data. However, these methods are not as effec-
tive because they do not consider both CT and pathological images, which limits
their accuracy in the detailed prognosis prediction process typically conducted
in clinical settings.

This study aimed to extract sufficient information from both CT and pathol-
ogy images to predict the prognosis of lung cancer patients more accurately.
Similar to clinical prognosis prediction process, we enhanced our approach by in-
corporating clinical information, thus effectively extracting data on TNM stages
and the morphology of cancer cells from CT and pathology images. With the
advance of Large Language Models (LLMs) [14,16], which offer rich semantic
language representations, we utilized LLM to interpret clinical information and
connect its relevance to the CT and pathology images. The features extracted
from CT and pathology, guided by clinical information, were integrated using
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Fig. 1: Overview of our proposed multi-modal MIL framework. Our model con-
sists of 3 steps: (a) encoding features, (b) aligning the encoded features with
LLM-guidance, and (c) aggregating features. The name of sub-module in (b),
Modality1×Modality2 Attention, means the cross-attention of Modality1 em-
bedding (as query) to Modality2 embedding.

multiple instance learning techniques, achieving an AUC of 0.877, p ≤ 0.05, and
a recall of 0.964, on the external validation set.

2 Method

Fig. 1 illustrates the overview of our proposed framework for LLM-guided multi-
modal multiple instance learning (MIL) for 5-year overall survival prediction.

2.1 Multiple Instance Learning

The binary MIL problem is predicting the label Y ∈ {0, 1} for a bag of instances
of X. In a situation where the instance-level label, {y1, ..., yn}, for each instance
is unknown, a bag can be considered positive if it contains at least one positive
instance, a prediction Ŷ = S(X) where S is a scoring function.

The basic premise is that each instance must be independent and identically
distributed (i.i.d.) [11]. However, in many real-world environments, it is very
difficult to construct a bag with instances that satisfy the premise, and it has
been proven that the MIL problem persists even when there is a correlation
between instances [15].
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MIL is usually used to process pathology images with large resolution [4,10,15],
but it has been expanded and applied to a multi-modality bag rather than a
pathology-only bag. In other words, each slice of CT, each patch of pathology,
and clinical note were regarded as one instance, forming a multi-modality bag.
For the defined instances for each modality, XCT = {xCT

1 , ..., xCT
NCT

} and XPth =

{xPth
1 , ..., xPth

NPth
}, the entire instance set becomes X = XCT ∪XPth ∪ xtext, and

S can be expressed for multi-modal instances as follows.

M = {E(xi)}Ni=1 (1)

Zimage, Ztext = MAM(M image, fc(M text)) (2)
S(X) = G(Z) (3)

where E is a feature encoder from each modality, MAM is a multi-modality
alignment module, fc is a single fully-connected(fc) layer and G is a feature
aggregator. M and Z = ZCT ∪ ZPth ∪ Ztext refer to encoded feature maps
that passed E and MAM, respectively, and Ztext×CT and Ztext×Pth represent
encoded text features aligned to CT and pathology image, respectively. N rep-
resents the number of instances per each modality.

2.2 Feature Encoders

CT Encoder For the 3D volume CT, we utilized a 3D convolution-based model
structure, the 3D ResNet (MC3) [17], as the encoder. To preserve the number of
instances in MCT , we only used up to the layer before 3D global average pooling
in MC3. Thus, for the input XCT ∈ R1×Nslice×HCT×WCT , we perform 2D global
average pooling over the spatial dimensions of output feature of MC3 which has
the size of D × Nslice × H ′

CT × W ′
CT to create a set of 1D vector instances of

length D which is identical for all modalities, denoted as MCT ∈ RNslice×D.
Pathology Encoder Patch-wise processing of pathology images involves feature
encoding for each patch. Considering computational costs, it is common to use
the patch feature encoder in a frozen state. In this study, we used CTransPath
[19], which is a state-of-the-art pretrained feature extractor trained via unsu-
pervised contrastive learning on H&E stained pathological images. It extracts a
feature vector of size 1 × D0 for each input xPth

i ∈ R3×Hpatch×Wpatch . To align
these features with those from other modalities, we add an additional fc layer,
resulting in MPth ∈ RNpatch×D.
Text Encoder Recent advancements have seen the emergence of LLMs capable
of capturing the deep semantic meanings, nuances, and relationships within text.
We utilized the pretrained text encoder of CLIP [14] as our text encoder. Al-
though CLIP, a leading model in the Visual-Language Model domain, is primar-
ily specialized in visual-language associative learning, its pretrained text encoder
possesses the complex capability required for processing and understanding lan-
guage data, thus fulfilling the role of an LLM. Our clinical information, consisting
of a single sentence, is converted into a list of integers through a tokenizer from
CLIP and then transformed into M text ∈ R1×D by the text encoder.
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2.3 Multi-modal Alignment Module (MAM)

To efficiently extract information from CT and pathology image modalities,
MAM employs text features derived via LLM, providing text prompts for map-
ping image features, closely mirroring the approach of the Segment Anything
Model [8]. This foundation model for segmentation maps image and prompt em-
beddings using a lightweight mask decoder which is a strategy we adapt by incor-
porating its modified transformer structure with omitting the mask generator.
In the MAM, we set the dimension of each modality’s encoded features to D,
generating LLM-guided features for each modality ZCT ∈ RNslice×D and ZPth ∈
RNpatch×D, alongside modality-aligned text features Ztext×CT , Ztext×Pth ∈ R1×D,
as in Eq.(2).

2.4 Feature Aggregator

Features updated through the MAM are concatenated back into the bag with
uniform dimensions. An aggregator G has a structure that repeats the self-
attention mechanism of the transformer [18] twice with additional class token
where the information of the entire bag is summarized. Subsequently, the class
token is passed through the fc layer to determine the final survival output.

3 Experiments and Results

3.1 Dataset

We use lung cancer prognosis prediction fusion datasets from ‘The Open AI
Dataset Project (AI-Hub, S. Korea)’, and all data information can be accessed
through ‘AI-Hub’. The dataset was collected from a total of 10,000 patients at
6 university hospitals. While the clinical information is organized into approxi-
mately 40 categories, only essential information that is necessarily obtained from
patients was selected for use in the study. The refined clinical information in-
cludes nine specific items: sex, age, smoking history, overall TNM stage, T stage,
N stage, M stage, location of cancer, and type of cancer cells. Pathology images
were classified into five cancer types, but this research focused only on adeno-
carcinoma and squamous cell carcinoma, which constitute the majority of lung
cancer cases. The pathology images were acquired either through biopsy or re-
section, with low quality images being excluded. Both CT and pathology images
used in the study were taken before treatment.

Data unsuitable for 5-year overall survival (5yOS) analysis, such as those lost
to follow-up or whose death was not due to cancer, were excluded. Following these
criteria, the total dataset of CT, pathology, and clinical information paired data
consisted of 908 cases, with the number of cases from each institution being 294,
267, 133, 111, 67, and 36, respectively. The data from the last three hospitals
were combined to comprise 23% of the total dataset, which was designated as the
external validation set. Distribution of all clinical indicators has been prepared
in the Supplementary Materials.

https://aihub.or.kr/aihubdata/data/view.do?currMenu=115&topMenu=100&aihubDataSe=data&dataSetSn=71394
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Fig. 2: t-SNE of data distribution for each modality. The distribution variance
between the train set and external validation set is minimal for clinical informa-
tion, yet it is relatively large for image domain modalities, CT and pathology
images.

3.2 Preprocessing

CT Pixel values were clipped to remain within the Hounsfield unit range of
[-1000, 1000] and then rescaled to [0,1]. Voxel size was normalized to [3.0, 0.69,
0.69] mm3, and input volumes adjusted to 160 × 512 × 512. For images with
spatial dimensions larger than 512 × 512, center cropping was performed to
maintain the focus on relevant regions, while smaller images were padded to
meet this size requirement. In instances where the number of slices exceeded
160, typically indicating inclusion of the pelvic area, cropping was focused on
the lower sections. Conversely, for volumes with fewer slices, zero-padding was
applied to the lower end of the CT volume.
Pathology There are typically large variance in staining due to differences in or-
gans and the objectives of observation during the H&E staining process (Fig. 2).
Therefore, stain normalization is an essential preprocessing step, and in this
study, we performed it using StainNet [6], which has shown great performance.
Also, each pathology image was divided into patches of size 3×224×224, exclud-
ing those patches corresponding to the background. On average, approximately
3,000 patches were generated.
Clinical Information Each item is provided in binary or continuous scalar
form. However, considering that the text encoder of CLIP was pretrained in the
form of words rather than general numbers, every item except age and stage was
converted to clinical words. Below is an example of clinical notes. The bold text
corresponds to clinical information.

“37 year old male nonsmoker lung cancer patient, stage 3, T1N2M0,
location right superior lobe, type adenocarcinoma.”

Then, it is converted into a 1D vector consisting of integers through CLIP’s
tokenizer.

3.3 Implementation Details

The framework is implemented on PyTorch using 2 NVIDIA RTX A6000 GPUs.
The dimension size of extracted patch-wise pathological feature D0 and each
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instance feature D are set to 768 and 512, respectively. We optimized the models
using the Adam with β1 = 0.9, β2 = 0.999, weight decay of 1e-7, and learning
rate of 1e-5 for 300 epochs. The binary cross-entropy loss is adopted to train the
network.

3.4 Results

Comparison with Existing Methods Both [20,21] attempted multi-modal
integration by extracting features from each modality and simply concatenat-
ing these features before aggregating them through a fc layer. The results of
their comparative experiments are summarized in Table 1 where the method
‘concat.+fc’ represents the corresponding methodology. The method of previous
studies achieved AUCs of 0.648 and 0.699, without and with clinical informa-
tion, respectively. For effective feature encoding, an additional experiment was
conducted where each encoder was first trained on a single modality before fine-
tuning on multi-modality. In this case, AUCs of 0.818 and 0.821 were achieved
with and without clinical information, respectively. In contrast, AUCs of our
method were 0.824 and 0.877.

Table 1: Comparison results on methods for aggregating the features of multi-
modality. The text is converted into sentence form as the input into CLIP’s
visual encoder. * indicates that the text is converted into a single vector and
extracted by a linear fc layer. AUC is for external validation set. The highest
results are bolded.

CT Pathology Text Method AUC

✓ ✓ - concat. + fc 0.648
✓ ✓ - G 0.824

✓ ✓ ✓ concat. + fc 0.699
✓ ✓ ✓ G 0.807

✓ ✓ ✓* MAM + G 0.829

✓ ✓ ✓ MAM + G 0.877

Ablation Studies AUC, accuracy, precision, and recall for both internal and
external validations are presented in Table 2. The internal validation set was
randomly split as 25% of the training set, with accuracy, precision, and recall
derived by applying the threshold value that maximizes Youden’s index in the
internal validation.

Without the use of LLM-guidance, the combination of CT and pathology
images achieved an AUC of 0.824, accuracy of 0.832, and recall of 0.934, outper-
forming single modality approaches. Incorporating the guidance improved the
AUC for the external validation set improved by 0.079 for CT images, 0.085
for pathology images, and 0.053 for the combined use of CT and pathology.
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The model utilizing all three modalities with this guidance recorded the highest
values, with an AUC of 0.877 (p<0.05), accuracy of 0.836, and recall of 0.964.

Additionally, without LLM-guidance, the AUC for pathology images in ex-
ternal validation decreased by 0.091 compared to internal validation, whereas
with it, the decrease was only 0.008. Other modality combinations also showed
smaller performance decreases when the guidance was applied compared to when
it was absent.

To further demonstrate its effectiveness, we aggregated clinical information
into a single vector and trained a linear layer without employing the CLIP text
encoder. Despite using the same feature alignment and aggregation as our model,
this method achieved an AUC of 0.829 (Table 1).

Table 2: Quantitative results of AUC, accuracy, precision, and recall for inter-
nal and external validation of 5yOS prediction. The increase in the evaluation
metrics of the results with text guidance is written below each metric value (▲
indicates an increase, and ▼ indicates a decrease). In the external validation,
p-values were calculated by the DeLong’s test [2] between with and without text
guidance, respectively. * indicates p-value is less than 0.05. The highest results
are bolded.

Modality Internal Validation (N=178) External Validation (N=214)

CT Pathology Text AUC Accuracy Precision Recall AUC Accuracy Precision Recall

✓ 0.836 0.775 0.869 0.683 0.823 0.757 0.919 0.753

✓ 0.814 0.730 0.819 0.673 0.796 0.678 0.945 0.621
✓ ✓ 0.869 0.792 0.802 0.842 0.875* 0.818 0.926 0.831

▲0.055 ▲0.062 ▼0.017 ▲0.168 ▲0.079 ▲0.140 ▼0.019 ▲0.211

✓ 0.867 0.758 0.876 0.772 0.776 0.757 0.885 0.789
✓ ✓ 0.868 0.787 0.825 0.792 0.860* 0.822 0.868 0.910

▲0.001 ▲0.028 ▼0.052 ▲0.020 ▲0.085 ▲0.065 ▼0.017 ▲0.120

✓ ✓ 0.843 0.775 0.770 0.861 0.824 0.832 0.861 0.934
✓ ✓ ✓ 0.898 0.798 0.849 0.832 0.877* 0.836 0.898 0.964

▲0.054 ▲0.023 ▲0.079 ▼0.030 ▲0.053 ▲0.005 ▲0.037 ▲0.030

4 Discussion

In this study, we significantly advanced lung cancer prognosis predictions by in-
tegrating CT image, pathology slide, and clinical note with LLM via MIL. Our
findings, validated internally and externally, showcase the model’s enhanced ac-
curacy, precision, recall, and AUC metrics, reflecting a substantial improvement
over traditional single-modality diagnostic methods. This multi-modal approach,
leveraging advanced artificial intelligence technologies, aligns closely with the
nuanced, holistic nature of clinical decision-making.

LLM-guidance was effectively applied across all image modalities to achieve
higher evaluation metrics when successfully aggregating various unique pieces of
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information through MIL, facilitating accurate bag-level predictions. Moreover,
it is evident that LLM-guidance is particularly beneficial in external validation
contexts. The performance metrics in external validation did not significantly
decline compared to internal validation. Since clinical information involves stan-
dardized labeling of structured items, there is minimal distribution variance
across cohorts and patients (Fig. 2). Consequently, leveraging clinical informa-
tion has enhanced the model’s generalization capacity in external validation
scenarios. In the medical field, since prediction of risk group is considered more
important, evaluation of recall is inevitable, and our model achieved the highest
recall value.

Nevertheless, this study has limitations. First, the study’s reliance on man-
ually generated prompts for LLM-guidance introduces performance variability.
Optimal prompt making is crucial, as the quality and structure of the prompts
significantly impact the model’s performance. Combining all clinical informa-
tion into a single sentence prompt has proven more effective than applying each
piece individually (e.g., “a photo of {information}”). Additionally, there is po-
tential to further enhance performance through learnable prompt techniques.
Second, it highlights a limitation in detailing specific feature correlations within
images and beyond clinical notes. These underscore the need for further research
into automated prompt generation and a deeper exploration of the independent
contributions of each imaging modality.

In conclusion, the use of LLMs for feature alignment and MIL for data ag-
gregation marks a notable innovation in processing complex medical datasets.
Our approach efficiently captures the intricate interplay between different medi-
cal data types, significantly enhancing the predictive model’s performance. Fur-
thermore, the model demonstrated robust generalization across diverse clinical
settings, indicating its potential for widespread clinical application despite chal-
lenges in variability across patient populations.
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