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Abstract. Survival prediction requires integrating Whole Slide Images
(WSIs) and genomics, a task complicated by significant heterogeneity
and complex inter- and intra-modal interactions between modalities. Pre-
vious methods used co-attention, fusing features only once after sepa-
rate encoding, which is insufficient to model such a complex task due
to modality heterogeneity. To this end, we propose a Biased Progressive
Encoding (BPE) paradigm, performing encoding and fusion simultane-
ously. This paradigm uses one modality as a reference when encoding the
other, fostering deep fusion of the modalities through multiple iterations,
progressively reducing the cross-modal disparities and facilitating com-
plementary interactions. Besides, survival prediction involves biomarkers
from WSIs, genomics, and their integrative analysis. Key biomarkers may
exist in different modalities under individual variations, necessitating the
model flexibility. Hence, we further propose a Mixture of Multimodal
Experts layer to dynamically select tailored experts in each stage of the
BPE paradigm. Experts incorporate reference information from another
modality to varying degrees, enabling a balanced or biased focus on dif-
ferent modalities during the encoding process. The experimental results
demonstrate the superior performance of our method on various datasets,
including TCGA-BLCA, TCGA-UCEC and TCGA-LUAD. Codes are
available at https://github.com/BearCleverProud/MoME.

Keywords: Multimodal Learning · Survival Prediction · Computational
Pathology.

1 Introduction

Survival analysis via Whole Slide Images (WSIs) and genomic data is crucial in
cancer prognosis as it assesses the risk of death and provides important references

https://github.com/BearCleverProud/MoME
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for the treatment plans. The key to this task is how to effectively utilize informa-
tion from both modalities, for instance, to detect image-omic biomarkers as well
as to explore interactions between tumor microenvironment in histopathology
images and co-expression of genomic data. In recent years, the focus of research
also has shifted from single-modal prediction [1,9,12,14,24] to the more compli-
cated survival analysis utilizing multimodal information [2,5,21,22,26,30,31].

One of the key challenges in this task is the significant heterogeneity between
histopathology images and genomic data [13], stemming from their inherent dis-
parities and distinct pre-processing methods. Additionally, the inter- and intra-
modal interactions are highly complex, as both modalities possess abundant
information, but only a small fraction of them can be mutually correlated and
utilized for survival prediction. Previous approaches have attempted to tackle
this challenge by using cross-modality attention (co-attention) [25] based meth-
ods [2,26,31]. However, feature fusion is conducted only once throughout the
entire process. These approaches might be considered shallow given the com-
plexity of the task and the significant differences between the two modalities.

To tackle these issues, we propose a Biased Progressive Encoding (BPE)
paradigm. Unlike previous methods that encode modalities separately before
fusion, our approach simultaneously encodes and fuses features. In this approach,
one modality is encoded while utilizing the other modality as a reference, which
can assist in extracting more relevant information. Furthermore, the encoding of
features from the two modalities is performed alternately, thereby progressively
reducing the differences between their feature spaces. This allows for a deeper
fusion process and facilitates the discovery of interactions between modalities.

In addition to modality heterogeneity, inter-individual variations can cause
key features for survival analysis to appear in different modalities for each pa-
tient. This presents a new challenge in designing the model structure, as it re-
quires selective focus on a specific modality or the interactions between the
two modalities. To achieve this, we propose a Mixture of Multimodal Experts
(MoME) layer, employing our BPE paradigm. The MoME layer consists of mul-
tiple specialized experts capable of modeling complex inter- and intra-modal
correlations. In addition, these experts incorporate reference information from
another modality to varying degrees, enabling a focus on different modalities
during the encoding process. Moreover, we enable flexible selection of experts in
each layer, as the function of reference information may differ. In the shallow
layers of the network, our MoME layer could use the reference information as a
filter to eliminate task-irrelevant features and enhance relevant ones within each
modality. Conversely, in the deeper layers of the network, it could be used as a
guidance to seeks cross-modal combination representations as biomarkers.

The contributions of this paper can be summarized as follows:

1. We propose a biased progressive encoding paradigm which integrates infor-
mation from one modality into the feature encoding of the other modality
as a reference for more effective feature extraction and interaction modeling.
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2. We design a mixture of multimodal experts layer which enables the network
to selectively focus on the information from a specific modality and utilizes
the reference information in different forms across encoding stages.

3. We extensively evaluate our method on three TCGA datasets: BLCA, UCEC,
and LUAD. The results demonstrate the superior performance of our method.

2 Methodology

2.1 Problem Formulation

The WSIs are usually formulated under the Attention-Based Multiple Instance
Learning (AB-MIL) framework [10,23]. This involves dividing the WSIs into bags
of patches and extracting features from them using a pre-trained neural network.
An MIL aggregator is then used to process the features, generate bag features,
and make predictions. The WSI patch features are represented as P ∈ Rnp×d,
where np is the number of patches in the WSI bag and d is the dimension for both
WSI and genomic latent features. The genomic data consists of various 1×1 val-
ues, including RNA sequencing, copy number variation, DNA methylation, etc.
Following previous works [2], the genomic data are categorized into the following
genomic sequences: 1) Tumor Suppression, 2) Oncogenesis, 3) Protein Kinases, 4)
Cellular Differentiation, 5) Transcription, and 6) Cytokines and Growth. These
sequences are stacked and fed into a fully connected layer to obtain genomic fea-
tures, which are denoted as G ∈ Rng×d, where ng = 6 is the number of genomic
sequences. In survival analysis, given the input pair (P ,G), rather than predict-
ing the exact time of death for patients, we initially estimate the hazard function
h(t) = h(T = t|T ≥ t, (P ,G)) ∈ [0, 1], which is the probability of death for a
patient right after the time point t. Subsequently, an ordinal value is obtained
via integrating the negated hazard functions: s(t|(P ,G)) =

∏t
u=1(1− h(u)).

2.2 Biased Progressive Encoding Paradigm

The overview of our BPE paradigm is shown in Fig. 1(a). For simplicity, we refer
to the modality being encoded as F (i)

1 , and the reference modality as F (i)
2 , where

F 1 could be either P or G, and i is the times of encoding. Our BPE paradigm
follows a progressive learning strategy, where F

(i)
1 is encoded to discover the

complex interactions with F
(i)
2 being a reference. This process is then reversed

to encode the other modality F
(i)
2 with the encoded first modality F

(i+1)
1 . The

deep feature extraction and progressive learning strategy in our BPE enable deep
fusion to reduce the inter-modal discrepancy. The complete progressive encoding
process, which involves encoding both modalities, is given as,

F
(i+1)
1 = BPE2i(F

(i)
1 ,F

(i)
2 ), F

(i+1)
2 = BPE2i+1(F

(i)
2 ,F

(i+1)
1 ), (1)

where BPE·(·, ·) is our MoME, detailed in the next section. We encode both
features twice for all datasets, facilitating a deep fusion of the two modalities.
Following the encoding, both features are fed into an attention block along with
a classification token, which is then used for the final survival prediction.
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Fig. 1. Illustrations of (a) our biased progressive encoding paradigm, and (b) the struc-
ture of our mixture of multimodal experts. The left section of (b) represents our gating
network, and the right section of (b) depicts our proposed three expert components
designed for different degrees of integration of the reference modality.

2.3 Mixture of Multimodal Experts

The structure of our MoME layer is depicted in Fig. 1(b). Our MoME layer
is derived from the traditional Mixture of Experts (MoE) [6,16,19], consisting
of a set of parallel feed forward networks (experts) and a gating network that
controls the selection of experts. Distinct from the classic MoE that operate at
the token level, routing tokens within a sequence to various experts, our MoME
innovates by functioning at the sample and layer levels, i.e., different samples
within the same layer or identical samples across different layers can be routed
to distinct experts. This innovation is pivotal for handling the informative yet
sparse characteristics of WSIs and genomics, where isolated features may be
nondescript, underscoring the necessity to process them collectively.

Our MoME comprises two components: 1) a gating network and 2) a set of
specially designed experts for multimodal survival analysis. Initially, the features
are passed to the gating network, which determines the most suitable expert to
utilize. The selected expert then performs fusion and encoding for F

(i)
1 .

Gating Network. The gating network is designed to be lightweight yet infor-
mative to select experts. It consists of linear layers, Gaussian Error Linear Units
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(GELUs) [8], and Rooted Mean Square Layer Normalization (RMSNorm) lay-
ers [28]. These modules map features into a new space, and the mapped features
are averaged to obtain the multimodal one. The gating network is given as,

logits = W · (mean(GELU(RMSNorm(W 1F 1))))

+W · (mean(GELU(RMSNorm(W 2F 2)))),
(2)

where W 1,W 2 and W are learnable matrices. The obtained logits are utilized
to select the appropriate expert. Unlike traditional MoE models that employ a
weighted sum of multiple experts [16], our approach enforces the selection of only
one expert within the module [27]. By adopting this strategy, the gating network
can make careful expert choices while also reducing computational costs.

Multimodal Expert Pool. We design the following four experts based on the
two principles: 1) inclusion of experts specializing in WSI, genomics, and inter-
actions between them, and 2) capability of simultaneous fusion and encoding.

TransFusion. This multimodal expert is based on self-attention. This expert
maximizes the utilization of the reference modality by enabling full information
exchange between the two modalities with self-attention. Given the input pair
(F 1,F 2), our proposed TransFusion (TF) expert can be expressed as,

TF(F 1,F 2) = SA([F 1,F 2])[: n1, :], (3)

where SA(·) is the Self-Attention [20], [F 1,F 2] ∈ R(n1+n2)×d is the concatena-
tion of F 1 and F 2, [: n1, :] indicates to select the first n1 rows of the matrix,
and n1, n2 denote the number of features of the two modalities F 1 and F 2.

Bottleneck TransFusion. Both modalities contain a vast amount of information,
but only a small portion of them is useful for survival analysis. Therefore, it
is necessary to distill the information and focus only on the portions that are
pertinent to the outcome. To tackle this, we propose Bottleneck TransFusion
(BTF) expert that avoids direct interactions between the two modalities with
the bottleneck features acting as independent features communicating between
the features of the two modalities [17]. The reference modality is lower utilized
compared to TransFusion as it does not allow complete mutual communication
of the two modalities. Let B ∈ Rnb×d denote the bottleneck features, where nb

is the number of bottleneck features, the BTF expert is given as,

BTF(F 1,F 2) = SA1(F 1,SA2(B,F 2)[: nb, :])[: n1, :]. (4)

SNNFusion. The SNNFusion (SF) expert is designed for fusion that is genomic
dominant, as it has promising results when applied solely to genomic data. The
utilization of reference modality is even lower when adopting this expert. In
SNNFusion, there are two SNNs [12] and our SF expert is given as,

SF(F 1,F 2) = SNN1(RMSNorm(F 1)) + mean(SNN2(RMSNorm(F 2))), (5)

where SNN(·) consists of a linear layer, an Exponential Linear Unit (ELU)
activation layer [4] and an alpha dropout layer [12].
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DropF2Fusion. This expert drops F 2 during fusion, serving as a skip layer, as it
completely stops utilizing F 2. It is particularly useful when using one modality
is accurate enough. Mathematically, the DropF2Fusion (DF) expert is given as,

DF(F 1,F 2) = F 1. (6)

2.4 Why Self-attention over Co-attention

Mathematically, the Co-Attention (CA) and SA can be given as,

CA(F 1,F 2) = Softmax(
(F 1Q)(F 2K)T√

d
)(F 2V ). (7)

SA([F 1,F 2]) = Softmax(

[
F 1Q
F 2Q

] [
(F 1K)T (F 2K)T

]
√
d

)

[
F 1V
F 2V

]
,

= Softmax(

[
(F 1Q)(F 1K)T {(F 1Q)(F 2K)T }
(F 2Q)(F 1K)T (F 2Q)(F 2K)T

]
√
d

)

[
F 1V
{F 2V }

]
.

(8)

The matrix multiplication result of the red brace portions in Eq. (8) matches
CA(F 1,F 2) in Eq. (7). CA(F 2,F 1), SA(F 1) and SA(F 2) are also embedded
in Eq. (8). Hence, we can conclude that CA is a sub-optimal substitute for SA.
Therefore, we design the experts based on self-attention instead of co-attention.

3 Experiments and Results

3.1 Datasets

The Cancer Genome Atlas (TCGA6) project provides extensive information on
patients under study, including WSIs, genomic data, and ground truth survival
time. The datasets used in our experiments include 373 samples of Bladder
Urothelial CArcinoma (BLCA), 480 samples of Uterine Corpus Endometrial
Carcinoma (UCEC), and 453 samples of LUng ADenocarcinoma (LUAD).

3.2 Implementation Details

Training Settings. We select a wide range of baseline methods, including those
focused on genomic data, WSIs, and both modalities. The methods for compar-
ison are: SNN [12], SNNTrans [12], AttnMIL [10], CLAM [15], TransMIL [18],
DTFD-MIL [29], Porpoise [3], MCAT [2], MOTCAT [26] and CMTA [31]. We
choose the Concordance index (C-index), a commonly employed metric in sur-
vival analysis, as our evaluation metric. To evaluate the performance of these
methods, we conduct a five-fold cross-validation. Each model is training for 20
epochs, and the best validation performance obtained among these epochs is con-
sidered as the final performance for the respective fold. The means and standard
deviations of the C-index for each method on different datasets are reported.
6 https://www.cancer.gov/tcga
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Table 1. C-index Results for different methods on three TCGA datasets. The best
results are underlined in red, while the second best are italicized in blue. “Geno.”
denotes the utilization of genomic profiles, and “Patho.” signifies the use of WSIs.

Modality Dataset
Geno. Patho. BLCA UCEC LUAD Overall

SNN [12] ✓ 0.618±0.022 0.679±0.040 0.611±0.047 0.636
SNNTrans [12] ✓ 0.659±0.032 0.656±0.038 0.638±0.022 0.651
AttnMIL [10] ✓ 0.599±0.048 0.658±0.036 0.620±0.061 0.626
CLAM-SB [15] ✓ 0.559±0.034 0.644±0.061 0.594±0.063 0.599
CLAM-MB [15] ✓ 0.565±0.027 0.609±0.082 0.582±0.072 0.585
TransMIL [18] ✓ 0.575±0.034 0.655±0.046 0.642±0.046 0.624
DTFD-MIL [29] ✓ 0.546±0.021 0.656±0.045 0.585±0.066 0.596
MCAT [2] ✓ ✓ 0.672±0.032 0.649±0.043 0.659±0.027 0.660
Porpoise [3] ✓ ✓ 0.636±0.024 0.692±0.048 0.647±0.031 0.658
MOTCAT [26] ✓ ✓ 0.682±0.023 0.671±0.053 0.673±0.040 0.675
CMTA [31] ✓ ✓ 0.672±0.038 0.691±0.066 0.676±0.037 0.680
MoME (Ours) ✓ ✓ 0.686±0.041 0.706±0.038 0.691±0.040 0.694

Hyper-parameters. Adam [11] optimizer is used in our experiment. The learn-
ing rate and weight decay are set to 2×10−4 and 1×10−5, respectively [26]. The
WSIs are split into patches sized of 256 × 256 pixels at 20× magnification and
ResNet-50 [7] pre-trained on ImageNet is used to extract features from them.
The number of bottleneck features in our experiments nb is 2. We utilize the
micro-batch technique [26] and the size of the micro-batch is 4,096.

3.3 Comparison Results

We conduct a comprehensive comparison of our method with both unimodal
methods and other state-of-the-art multimodal methods. The results are pre-
sented in Table 1. Our method consistently outperforms all other methods across
all datasets, particularly on the UCEC and LUAD datasets, where it exhibits a
significant performance advantage over previous approaches. Our method achieves
improvements of 0.4%, 1.4%, and 1.5% on the C-index of the three datasets, re-
spectively, compared to previous methods, as well as a 1.4% improvement in
overall performance. These results suggest that our MoME is applicable to gen-
eral survival analysis settings. Notably, despite their simple structures, methods
based on genomic data outperform those based on WSIs, highlighting the impor-
tance of genomic data in survival analysis. Furthermore, multimodal methods
consistently outperform unimodal methods, further demonstrating the efficacy
of multimodal approaches and the necessity of incorporating multiple modalities.

3.4 Ablation Studies

Choices of Experts. We conduct experiments to assess the effectiveness of each
expert by deactivating them individually. The experimental results are presented
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Table 2. Ablation study results for using different experts in our MoME (left) and
sensitivity analysis in the number of bottleneck features (right). “T.” represents Trans-
Fusion, “B.” represents Bottleneck TransFusion, “S.” represents SNNFusion, “D.” rep-
resents DropF2Fusion, and “#B.” denotes the number of bottleneck features.

Experts Dataset #B. Dataset
T. B. S. D. UCEC LUAD UCEC LUAD

MoME ✓ ✓ ✓ ✓ 0.706±0.038 0.691±0.040 1 0.690±0.029 0.669±0.029
MoME ✓ ✓ ✓ 0.693±0.041 0.673±0.043 2 0.706±0.038 0.691±0.040
MoME ✓ ✓ ✓ 0.703±0.052 0.663±0.064 4 0.699±0.053 0.673±0.040
MoME ✓ ✓ ✓ 0.738±0.060 0.669±0.045 8 0.717±0.072 0.658±0.035
MoME ✓ ✓ ✓ 0.684±0.053 0.685±0.047 16 0.704±0.044 0.662±0.034
TF ✓ 0.690±0.059 0.655±0.061 / / /

in the left part of Table 2. We observe that our MoME with all experts achieves
the best performance on LUAD and the second-best performance on UCEC.
The MoME without the SNNFusion expert achieves the best performance on
UCEC. These results indicate that the most crucial components for UCEC and
LUAD differ, suggesting that a MoME focusing on a specific modality could be
beneficial. This further supports the necessity of our MoME, which dynamically
selects different experts for different samples. Additionally, the performance of
our MoME compared to TransFusion reaffirms its superiority.

Sensitivity Analysis on BTF. We conduct a sensitivity analysis on UCEC
and LUAD by varying the number of bottleneck features used in BTF from 1
to 16. The results are presented in the right part of Table 2. We observe that
our MoME achieves the overall best performance when the number of bottleneck
features is 2, which strikes a balance between these two datasets. Specifically, our
MoME achieves the best performance on UCEC when the number of bottleneck
features is 8, however, its performance on LUAD is the lowest.

4 Conclusion

In this paper, we introduced a BPE paradigm and a MoME layer for cancer
survival analysis. The BPE paradigm enables deep fusion by performing fea-
ture encoding and fusion simultaneously, leveraging one modality as a reference
to encode the other. With this, our BPE can addresses the severe heterogene-
ity between WSI and genomic features. Additionally, our MoME layer dynami-
cally selects the most appropriate expert to model the intricate inter- and intra-
modal correlations, addressing the challenges posed by variations in key features.
Through extensive experiments, we demonstrated that our method outperforms
other multimodal learning approaches in survival prediction, and the results
suggest that our method could be applied to a general survival analysis setting.
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