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Abstract. In digital pathology, the multiple instance learning (MIL)
strategy is widely used in the weakly supervised histopathology whole
slide image (WSI) classification task where giga-pixel WSIs are only
labeled at the slide level. However, existing attention-based MIL ap-
proaches often overlook contextual information and intrinsic spatial rela-
tionships between neighboring tissue tiles, while graph-based MIL frame-
works have limited power to recognize the long-range dependencies. In
this paper, we introduce an integrative graph-transformer framework
that simultaneously captures the context-aware relational features and
global WSI representations through a novel Graph Transformer Inte-
gration (GTI) block. Specifically, each GTI block consists of a Graph
Neural Network (GNN) layer modeling neighboring relations at the local
instance level and an efficient global attention model capturing compre-
hensive global information from extensive feature embeddings. Extensive
experiments on three publicly available WSI datasets: TCGA-NSCLC,
TCGA-RCC and BRIGHT, demonstrate the superiority of our approach
over current state-of-the-art MIL methods, achieving an improvement of
1.0% to 2.6% in accuracy and 0.7%-1.6% in AUROC.

Keywords: Whole slide image classification · Multiple instance learn-
ing· Graph Transformer

1 Introduction

With the significant advance in high-throughput whole slide tissue scanning
technology, digital pathology leverages high-quality whole slide images (WSIs)
and has become on actively developing component in pathology study [23].
As WSIs often contain giga-pixels and lack pixel-level annotations, an efficient
and effective way to analyze such high-resolution WSIs becomes critical to fa-
cilitate cancer diagnosis and prognosis. Due to the remarkable performance,
deep-learning based multiple instance learning (MIL) is often employed in such
weakly-supervised scenarios, where only slide-level labels are available [12, 14,
15, 29]. In the MIL framework, each image patch or instance is first encoded
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as a feature embedding using a pretrained feature extractor [15]. These embed-
dings are next passed to an aggregator module that compiles embeddings into a
comprehensive bag-level representation before the classification [26].

Multiple digital pathology studies in the MIL framework adopt attention
mechanisms and achieve promising results with the global WSI representations [13,
21]. However, these methods assume that all instances are independent and thus
ignore the critical correlations across different tissue regions. The self-attention
mechanism of vision transformers (ViT) [10] has been used to address this prob-
lem, where pairwise similarity scores across all instances are computed [25, 5, 27].
However, such pairwise calculation has quadratic complexity, making it often too
demanding to support a large number of input instances for WSI classification.
To alleviate this problem, the Nyström-attention [28] has been applied in Trans-
MIL [25]. It utilizes a subset of landmarks to approximate the self-attention
process. Similarly, FlashAttention [8] achieves full self-attention ability and uses
the IO-aware mechanism to enhance the attention efficiency.

Besides the correlation across instances, the tissue spatial relationship is cru-
cial for the WSI analysis. However, it is often overlooked in existing MIL studies.
While position encoding in Transformers for fixed-length sequences [10] can pre-
serve positional information, it cannot be directly used in the WSI analysis due
to the variable lengths of input instance embeddings. To address this, Trans-
MIL [25] uses the Convolution Neural Network(CNN) to characterize the spatial
information. However, it reorganizes the tissue patches and does not accurately
reflect the genuine spatial relationships among the patches. Consequently, the
inherent potential for spatial arrangement within WSI has not been thoroughly
explored.

By contrast, the graph structure is widely known for its intrinsic merit for spa-
tial relationship representations and graph-based MIL methods have increasingly
gained attention for the histopathology WSI analysis. Graph Neural Networks
(GNNs) utilize a foundational local message-passing mechanism to capture spa-
tial interactions and integrate neighboring instances and provide a cutting-edge
graph-based paradigm for digital pathology studies. However, such GNN-based
frameworks may suffer from over-smoothing [16] due to repeated aggregation of
local information and over-squashing [2] as a result of the increased depth of the
model. Moreover, graph-based MIL frameworks exhibit limitations in recognizing
long-range dependency.

Recent research has demonstrated that integrating self-attention mechanisms
into graph-based approach can effectively mitigate the limitations of the message-
passing mechanism, such as over-squashing and over-smoothing, thereby enhanc-
ing the model’s capability for representation [24]. Furthermore, the application
of graph transformers has extended to multi-modal, multi-task, and multi-scale
analysis of WSIs [22, 30, 9]. The GTP [31] has been developed for WSI classifica-
tion and uses a clustering-based mincutpool [3] to bridge the graph convolutional
network (GCN) layers and the transformer layers. However, the GCN layers in
GTP are still prone to over-squashing, and the inevitable information loss from
the pooling layer constrains the transformer’s capabilities.
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To alleviate these limitations, we introduce a novel Integrative Graph-Transformer
(IGT) framework for WSI representation and classification. The core architec-
ture of the IGT framework consists of a sequence of graph transformer inte-
gration blocks, where each block integrates a GNN layer to encode spatial re-
lationships among adjacent instances and a global attention module to capture
global WSI representations. Our framework can simultaneously model spatial re-
lationships at the local instance level and long-range pairwise correlations across
all instances. We demonstrate the efficacy of our method on three public WSI
datasets: TCGA-NSCLC, TCGA-RCC and BRIGHT. With extensive testing on
these datasets, our IGT framework presents superior performance over state-of-
the-art methods, achieving a 1.0% to 2.6% improvement in accuracy and a 0.7%
and 1.6% increase in AUROC.

2 Method

As illustrated in Fig. 1, the proposed IGT framework consists of three key com-
ponents: graph construction, the backbone, and the downstream process. During
graph construction, feature vectors are extracted and the corresponding adja-
cency matrix is created. The backbone module processes this undirected WSI
graph representation, serving as an efficient encoder. Finally, the refined features
from the last GTI block are provided to the downstream model for classification.

2.1 Graph Construction

For each WSI graph G construction, we first partition a WSI into nonoverlapping
256 × 256 tissue region patches/instances. Note that the number of extracted
instances N varies for different WSIs. A ResNet50 [11] model pre-trained on
ImageNet is used to encode each instance into a 1024-dimensional feature vector
{hi ∈ R1024, i = 1, 2...N}. Each patch is treated as a node in the WSI graph and
we assemble instance feature vectors as the node feature matrix {H ∈ RN×1024}
for each WSI. To depict node connectivity in the WSI graph, we preserve the
patch spatial coordinates in the WSI and find adjacent nodes using the K-Nearest
Neighbor algorithm (i.e. k-NN, k=8) [7]. Thus, we build the WSI graph G =
(H,A) in Euclidean space, where {A = [Aij ],A ∈ RN×N} is the adjacency
matrix. Its entry Aij = 1 if there exists a connection between node i and j
based on the k-NN algorithm applied to node feature representations (hi,hj).
Otherwise, Aij = 0. This graph models the local neighborhood information
across the entire WSI.

2.2 Graph-Transformer Integration Block

The spatial relationships across tissue instances are crucial for the WSI repre-
sentation and classification [1]. Therefore, we designed the GTI block to simul-
taneously aggregate local instance relationships and capture long-range pairwise
correlations across the entire tissue domain.
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Fig. 1. Overview of the proposed method. The process begins with the graph construc-
tion module where a graph representation G = (H,A) is generated for the subsequent
backbone network. Here, H is the feature matrix and A denotes the associated adja-
cency matrix. Within each l-th integration block of the backbone, a global attention
layer processes Hl to produce the feature matrix Tl+1, and a GNN layer processes
both Hl and A to update the graph representation Gl+1. Finally, the integrated fea-
ture Hl+1 from the last block is utilized for prediction in the downstream module.

As depicted in the integration block (Fig. 1), the l-th GTI block operates on
the GNN and GlobalAttention layers in parallel and integrates their outputs
through a simple summation as follows:

Gl+1 = GNN
(
Hl, A

)
(1)

Tl+1 = GlobalAttn
(
Hl
)

(2)

Hl+1 = GTI
(
Hl,A

)
= Gl+1 + Tl+1 (3)

where Gl+1 ∈ RN×d is the generated graph representation, Tl+1 ∈ RN×d is the
global attention feature matrix, and d is the dimension of the feature embedding.

(1) GNN: The message passing functions of the general GNN operator, act-
ing on the local neighborhood of node u at l-th layer, can be represented as
follows:

ml
u = AGG

({
ml

uv = ρ
(
hl
u,h

l
v,h

l
euv

)
, v ∈ N (u)

})
(4)

gl+1
u = ϕ

(
hl
u, ml

u

)
(5)

where ρ, AGG, and ϕ are differentiable functions. The message construction
function ρ constructs a message for node u by integrating the node u feature
hl
u, features of its neighbors hl

v, and the edge features hl
euv

. The AGG is a
permutation invariant function that aggregates all messages directed towards
node u. In essence, the AGG function executes MIL-manner operations within a
graph’s local neighborhood. The resulting feature gl+1

u of node u is then updated
by merging the original node feature hl

u and the aggregated message ml
u via the

update function ϕ. As the choice of these GNN related functions is flexible, we
adopt the generalized graph convolution GENConv from DeeperGCN [18]. The
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corresponding message passing functions are defined as follows:

ml
uv = ReLU

(
hl
v

)
+ ϵ (6)

ml
u =

∑
v∈N (u)

exp
(
βml

uv

)∑
v∈N (u)

exp (βml
uv)

·ml
uv (7)

gl+1
u = ϕ

(
hl
u, ml

u

)
= MLP

(
hl
u +ml

u

)
(8)

Due to the absence of edge features in the constructed WSI graph, we omit
them from the Equation 6 and aggregate only the neighboring node features.
Therefore, the message is constructed using a ReLU activation function and
the neighboring node feature hl

v. Additionally, a small positive constant (ϵ =
10−7) is added to the ReLU activation function output to ensure positive feature
values for the numerical stability. The resulting messages from neighboring nodes
are summed with weights by the SoftMax function where hyper-parameter β
denotes the inverse temperature. This aggregation method concentrates on the
local instance interactions. Finally, the update function is structured as a two-
layer MLP. These configurations ensure an effective feature transformation and
message propagation.

(2) Global Attention: While GNNs can be used to describe the entire WSI
graph, they can be constrained for long-range dependency characterization due
to the limited receptive field. Although an increase in a GNN depth could be
a potential remedy, it can result in indistinguishable node representations, an
issue known as over-smoothing or over-squashing. To alleviate these problems,
we implement a global attention module in parallel to the GNN (Fig. 1). This
design enhances the ability to identify discriminating node representations from
the entire WSI graph. Specifically, the global attention layer employs the self-
attention mechanism, with its formulation given below:

GlobalAttn(Q,K,V) = softmax

(
QKT√

dq

)
V (9)

where feature representations Q,KandV are calculated by projecting instance
feature matrix H using three distinct weight matrix Wi ∈ Rd×di . While the self-
attention mechanism in the original transformer is effective and well-suited for
this scenario, its O(N2) computational complexity limits its ability to process a
large number of input instances efficiently. To address this limitation, we leverage
FlashAttention (FA) [8] to fully harness the potential of the multi-head self-
attention mechanism without information loss or an expensive computational
cost. By integrating global feature embeddings with those from the GNN branch,
we produce effective and expressive WSI representations that are able to capture
the global contextual information and the local neighbor interactions.

After feature processing via GTI blocks, a straightforward attention-based
MIL pooling [13] strategy is used for feature aggregation in the downstream
phase in Fig. 1. The resulting bag-level representation hbag ∈ R1×d is computed
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by the weighted average of the instance representations by the attention scores
α as follows:

hbag = αTHL (10)

In the final phase, the bag-level feature hbag is provided to the MLP layer to
achieve the final bag-level classification.

3 Experiments

3.1 Datasets

To demonstrate the efficacy of our novel IGT framework, we conduct experi-
ments and compare our method with SOTA methods on three widely used pub-
lic datasets: TCGA-NSCLC (The Caner Genome Atlas Non-Small Cell Lung
Cancer), TCGA-RCC (Renal Cell Carcinoma) and BRIGHT [4]. We use the
official data split when available; otherwise, we split the train, validation, and
test sets by a ratio of 6.5:1.5:2.0. All WSIs in these datasets are cropped at 20×
magnification.
TCGA-NSCLC is a lung cancer dataset and includes two distinct cancer
subtypes: Lung Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma
(LUSC). It has 1,043 diagnostic digital WSIs with 531 and 512 WSIs of LUAD
and LUSC, respectively. We follow the same random split as in the DSMIL
study [17].
TCGA-RCC is a kidney cancer dataset and consists of 940 WSIs. Specifically,
there are 121 WSIs of 109 Kidney Chromophobe Renal Cell Carcinoma (TCGA-
KICH) cases, 519 WSIs of 513 Kidney Renal Clear Cell Carcinoma (TCGA-
KIRC) cases, and 300 WSIs of 276 Kidney Renal Papillary Cell Carcinoma
(TCGA-KIRP) cases.
BRIGHT is a breast cancer dataset and contains 503 diagnostic slides across
six breast tumor subtypes: Pathological Benign (PB), Usual Ductal Hyperpla-
sia (UDH), Flat Epithelia Atypia (FEA), Atypical Ductal Hyperplasia (ADH),
Ductal Carcinoma in Situ (DCIS), and Invasive Carcinoma (IC). We use the
official data split, with 423 WSIs for training and 80 WSIs for testing.

3.2 Implementation Details

In the graph construction phase, background patches with a saturation level
of less than 15 are discarded. The processed 1024-dimensional feature vector
hi ∈ R1024 is downscaled to 256 using a linear layer and assembled for the node
feature matrix H ∈ RN×256 [21, 25], before being taken as input. For model
training, the cross-entropy loss function is utilized, and the batch size is set to
1. We adopt the Rectified Adam optimizer [20] for optimization with a weight
decay of 1e-5. We train the IGT framework for 40 epochs on both TCGA-NSCLC
and TCGA-RCC datasets, and for 30 epochs on BRIGHT dataset. The learning
rate starts at 1e-3, decaying to 1e-4 at epoch 20 for TCGA-NSCLC, and at
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Table 1. Comparison of accuracy and AUROC on three public datasets. The reported
metrics are presented as percentages and averaged over three runs. Our IGT framework
consistently outperforms existing state-of-art MIL methods.

Method TCGA-NSCLC TCGA-RCC BRIGHT-6class

ACC(%) AUC(%) ACC(%) AUC(%) ACC(%) AUC(%)
Mean-pooling 77.6 86.2 82.3 94.2 26.1 64.1
Max-pooling 79.0 85.8 84.0 96.1 29.3 66.0
ABMIL[13] 84.1 91.3 86.8 97.1 30.8 67.0
DSMIL[17] 86.0 93.9 87.7 97.7 36.4 72.5
CLAM-SB[21] 85.5 90.9 88.5 98.0 33.1 69.1
CLAM-MB[21] 87.9 92.9 89.9 97.9 38.1 71.7
TransMIL[25] 89.3 94.2 90.2 97.7 39.6 71.8
GCN-ABMIL[19] 87.3 94.4 89.2 97.6 33.4 68.1
Patch-GCN[6] 88.8 95.0 89.7 98.1 38.2 71.2
GTP[31] 90.5 95.8 91.4 97.7 40.8 72.9
IGT (Ours) 91.6 96.7 92.4 98.4 43.4 74.5

epoch 15 for TCGA-RCC and BRIGHT. We employ two GTI blocks for TCGA-
NSCLC and TCGA-RCC, and three GTI blocks for BRIGHT. All models are
implemented by PyTorch 2.2, and executed on an NVIDIA GeForce RTX 3090Ti
GPU.

3.3 Results

Performance comparison with the SOTA methods: We compare the
proposed IGT with ten baselines: Seven of them are non-graph-based meth-
ods, including max/mean-pooling, ABMIL [13], DSMIL [17], CLAM-SB [21],
CLAM-MB [21] and TransMIL [25]. Three of them are graph-based MIL meth-
ods, including GCN-ABMIL [19], PatchGCN [6] and GTP [31]. Note that both
TransMIL and GTP use Transformers. We choose overall accuracy (ACC) and
area under receiver operating characteristic curve (AUROC) as the evaluation
metrics.

As illustrated in Table 1, our IGT framework surpasses current SOTA meth-
ods. Specifically, compared with the best performing graph-based method, GTP,
our method achieves a 1.1% improvement in accuracy and a 0.9% increase in
AUROC for the binary classification on the TCGA-NSCLC dataset. In multi-
class classification, our method shows a 1.0% improvement in accuracy and a
0.7% increase in AUROC for the TCGA-RCC dataset, and a 2.6% improve-
ment in accuracy with a 2.5% increase in AUROC on the BRIGHT dataset.
Similarly, when compared with the leading non-graph-based method, Trans-
MIL, our method shows a substantial 2.2%-3.8% improvement in accuracy and a
0.7%-2.7% enhancement in AUROC. In conclusion, our graph-transformer-based
method significantly outperforms both current graph-based and transformer-
based approaches, indicating the advantages of integrating local neighborhood
information with global context for enhanced performance.
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Ablation Studies: To demonstrate the efficacy of the developed GTI block and
investigate the necessity of model components, we conduct an ablation study to
quantify the separate benefit of the individual global-attention and GNN module
using ABMIL and DSMIL as the aggregation modules. As shown in Table 2,
compared with GTI block without self-attention, our GTI achieves a 2.4% to
5.7% improvement in accuracy. It proves that the self-attention mechanism in
our GTI captures pairwise correlation across all instances and thus improves
performance. In comparing our GTI block with GTI block without the GNN
branch, our GTI block achieves a 3.7% to 5.6% increase in accuracy. It shows
the necessity of spatial information for WSI analysis.

An interesting finding is that the method equipped exclusively with the global
attention module exhibits inferior performance compared to those only utilizing
GNN. This discrepancy can be attributed to the lack of spatial information when
directly applying the self-attention mechanism for WSI analysis.

Table 2. An ablation study conducted to evaluate the importance of each component
within the GTI block, utilizing ABMIL and DSMIL as the base aggregation models.

Aggregator Backbone TCGA-NSCLC TCGA-RCC BRIGHT-6class

ACC(%) AUC(%) ACC(%) AUC(%) ACC(%) AUC(%)

ABMIL - 84.1 91.3 86.8 96.1 30.8 67.0
GTI w/o Attn 89.2 95.2 88.8 98.1 38.7 72.5
GTI w/o GNN 86.0 93.1 87.8 98.0 38.1 71.2

GTI 91.6 96.7 92.4 98.4 43.4 74.5

DSMIL - 86.0 93.9 87.7 97.7 36.4 72.5
GTI w/o Attn 87.9 94.3 89.8 98.1 39.0 73.7
GTI w/o GNN 87.4 95.2 88.7 98.0 37.4 73.8

GTI 91.1 95.5 91.7 98.5 42.9 73.4

4 Conclusion

In this paper, we introduce a new integrative graph-transformer framework,
IGT, that simultaneously captures context-aware relational features from lo-
cal tissue regions and global WSI representations across instance embeddings for
histopathology WSI classification. We integrate the graph convolutional network
with a global attention module to construct the graph-transformer integration
block. Specifically, the graph convolutional network explores the local neighbor
interactions and the multi-head self-attention model captures the long-range de-
pendencies from all instances. The efficacy of the developed framework is demon-
strated using three public WSI datasets. Compared with multiple state-of-the-art
methods, our approach consistently shows superior performance, suggesting its
promising potential to support computational histopathology analyses.
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