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Abstract. The fundamental question in neuroscience is to understand
the working mechanism of how anatomical structure supports brain func-
tion and how remarkable functional fluctuations emerge ubiquitous be-
haviors. We formulate this inverse problem in the realm of system identi-
fication, where we use a geometric scattering transform (GST) to model
the structure-function coupling and a neural Koopman operator to un-
cover dynamic mechanism of the underlying complex system. First, GST
is used to construct a collection of measurements by projecting the proxy
signal of brain activity into a neural manifold constrained by the geom-
etry of wiring patterns in the brain. Then, we seek to find a Koopman
operator to elucidate the complex relationship between partial observa-
tions and behavior outcomes with a relatively simpler linear mapping,
which allows us to understand functional dynamics in the cliché of con-
trol system. Furthermore, we integrate GST and Koopman operator into
an end-to-end deep neural network, yielding an explainable model for
brain dynamics with a mathematical guarantee. Through rigorous ex-
periments conducted on the Human Connectome Project-Aging (HCP-
A) dataset, our method demonstrates state-of-the-art performance in
cognitive task classification, surpassing existing benchmarks. More im-
portantly, our method shows great potential in uncovering novel insights
of brain dynamics using machine learning approach.

Keywords: Functional-structural Coupling · Neural Koopman Opera-
tor · Brain Dynamics.

1 Introduction

The dynamics of the human brain are complex and nonlinear due to the intricate
interactions and behaviors of its highly connected structural components [16, 12].
The complexity of brain dynamics is also reflected in the altered spontaneous
neuronal activity, which contributes to increased temporal complexity [18]. One
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Fig. 1: Our study delves into the cou-
pling mechanism between structural
topology and functional dynamic signals
(neural activity). By leveraging Koop-
man Operator theory, we model the
brain network as a high-dimensional
system, where the Geometric Scatter-
ing Transform generates the latent state
from observed topology and signals.

of the fundamental science challenges is to understand these complex and non-
linear dynamics by coupling the structural topology information and functional
dynamic signals (as shown in Fig. 1 ).

The brain network representation provides a powerful framework to under-
stand brain dynamics [6, 1, 14]. By coupling the structural connectivity and dy-
namic signals of each region, we can enhance our understanding of the activity
of a brain region in specific states. However, BOLD (blood-oxygenation-level-
dependent) signal is an in-vivo proxy of brain activity while often accompanied
with high level of noisy, which further complicates the already challenging task
of understanding the complex brain system. Consequently, conventional linear
system representation methods have limited power to capture the patterns of
neural activity and dynamics of brain regions.

In this regard, Koopman theory [10] has emerged as a valuable tool for
elucidating the underlying dynamics of nonlinear complex systems. This the-
ory enables the representation of nonlinear system dynamics using an infinite-
dimensional linear operator, acting on the space of all observable functions of
the dynamic system. By linearizing complex brain systems, one can fully char-
acterize them based on their spectral composition. Recent advancements have
witnessed the application of deep learning techniques for estimating the Koop-
man operator. [23, 11, 2].

However, many existing deep learning methods simultaneously learn both the
measurement functions and the Koopman operator, often resulting in inaccurate
estimations of the Koopman operator. Moreover, the BOLD signal extracted
from fMRI, the signal of interest in our study, is inherently unstable and prone
to noise from various sources such as instrumental instabilities, head motion, and
physiological fluctuations. To address these challenges, we propose a novel data-
driven approach called the Scattering Neural Koopman Operator. Our method
leverages the Koopman operator framework along with the geometric scattering
transform (GST) [7], which is proven to be stable with small perturbations of
both signals and structural topology. The GST is used to construct a collection
of measurements by projecting the proxy signal of brain activity into a neural
manifold constrained by the geometry of wiring patterns in the brain. This in-
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novative method aims to enhance Koopman operator estimation accuracy and
robustness while effectively handling inherent noise and instability in fMRI data.

Although Koopman operator framework has demonstrated promise in cap-
turing the overarching dynamics embedded within brain network systems, its
global and linearized nature may oversimplify the complex, nonlinear dynamics
inherent in neurocognitive processes, potentially overlooking the fine-grained,
transient patterns of neural activity. To this end, we propose a state control
module designed to complement the Koopman operator, which takes BOLD
signals as input and generates corresponding control outputs, enabling us to
capture and predict the nuanced dynamics of brain activity. Our contributions
are three-fold:

• We propose a method named Scattering Neural Koopman Operator which
leverages Koopman operator theory and geometric scattering transform to
couple structural brain network and brain activity signal to model the global
dynamics of the brain system.

• We introduce a control module that can take input to guide the state tran-
sition and learn the state-specific activities.

• We conduct experiments on the HCP-A dataset and achieve state-of-the-
art performance in cognitive task classification. Further, we delve into the
analysis of state-specific brain region activation and investigate how state-
specific neurocircuits underline the cognitive functions at various frequencies.

2 Methodology

2.1 Koopman Operator Theory

A sequence of whole-brain BOLD signal Xt = {xt+m}M−1
m=0 from time t to

t+M − 1 can be considered as observations of brain states. The nonlinear dy-
namic brain system can be partially formulated as xt+1 = F(xt), where again
xt ∈ X ⊆ RN is the brain system state and F(·) is a non-linear function ex-
pressing the state transition. Considering the complexity of studying nonlinear
systems, the Koopman operator theory[10] has been widely used, which can rep-
resent a nonlinear dynamic system by an infinite-dimensional linear Koopman
operator. Specifically, the linear Koopman operator K : G(X ) 7→ G(X ) acts on
a space of measurement functions G := {g : X 7→ R}. Then the state transition
can be represented by:

g(xt+1) = Kg(xt) = g(F(xt)) (1)

2.2 Scattering Neural Koopman Operator

Research [13] has confirmed that even with a limited number of measurement
functions, an accurate approximation to nonlinear dynamics is achievable if the
measurement functions are judiciously selected. Herein, we construct measure-
ments by coupling the structural connectivity and BOLD signals. Specifically,
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we utilize geometric scattering transform (GST)[7] to generate multi-scale mea-
surements (as shown in Fig. 2 (a)) because 1) the use of GST aligns closely
with the human brain, where we conceptualize that cognition and behavior
emerge from spontaneous functional fluctuations supported by neural circuits of
physically interconnected brain regions and 2) GST also offers a flexible multi-
scale window to elucidate the SC-FC coupling mechanism with great neuro-
science insight and mathematical guarantee. We first consider an undirected,
weighted and attributed structural brain network G = (V,E,W) with vertices
set V = {vi|i = 1, . . . , N}, an edge set E ⊆ {(vi, vj) : 1 ≤ i, j ≤ N}, edge
weights W = {w(vi, vj) > 0 : (vi, vj) ∈ E}. Then we define the weighted adja-
cency matrix A = [aij ]

N
i,j=1 where aij = w(vi, vj) if (vi, vj) ∈ E and 0 otherwise.

Thus the multi-scale graph wavelets {Ψh}H−1
h=0 can be defined as:

Ψ0 := IN −P, h = 0

Ψh := P2h−1

−P2h , 1 ≤ h < H
(2)

where IN is an N ×N identity matrix and P = 1
2 (IN +AD−1) is the lazy ran-

dom walk matrix. Given the wavelet filters, define the one-step propagator with
element-wise absolute value function by U[h]xt := |Ψh|xt. Then the scattering
propagator is defined by stacking the one-step propagator (shown in Fig. 2 (b))

Up(l)xt := U[hl]U[hl−1], . . . ,U[h1]xt (3)

where p(l) = (h1, . . . , hl) is path (tuple) with 0 ≤ h1, . . . , hl < H and |p| = l. The
windowed scattering transform is finally constructed by applying the low-pass
filter Φ = P2H to Up(l)xt

Sp(l)xt := ΦUp(l)xt (4)

The geometric scattering transform forwards as a tree with each layer consist-
ing of graph-wavelets filters, absolute value function, and a low-pass filter where
the input of root node is Xt = {xt+m}M−1

m=0 . Finally, we stack all these geo-
metric scattering coefficients (tree nodes) to form the multi-scale measurements
Zt = {Sp(l)Xt|p(l) ∈ P(l), l = 0, 1, . . . , L} ∈ RNB×M , where P(l) is the set
of paths with length l, L is the depth of geometric scattering transform and
B =

∑L
l=0 H

l is the number of GST coefficients. By shifting Xt one time point
forward, we can obtain the paired multi-scale measurements Zt+1 ∈ RNB×M .
Then the Koopman is estimated by Zt and Zt+1. Traditionally, the Koopman
operator is calculated by extending Dynamic Mode Decomposition (eDMD)[21]
which involves the time-consuming spectral decomposition for each subject (sam-
ple). Therefore we utilize trainable matrix K ∈ RNB×NB to learn the Koopman
operator (as shown in Fig. 2 (b)).

2.3 Predict State Transitions with Control

The derived Koopman operator effectively encapsulates the global dynamics in-
herent in the brain network system. Nonetheless, it is crucial to acknowledge
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Fig. 2: (a) Measurements and Koopman matrix construction. (b) One-step for-
ward. (c) Control Module. (d) Loss function.

that brain states exhibit rapid variations over short time intervals, which the
macroscopic perspective of the Koopman operator may fail to adequately cap-
ture. Therefore, we introduce control input Yt for each time point zt to guide
the dynamics forward to the desired brain state. Here the control input Yt we
use is also the BOLD signal sequence like Xt but with a much smaller window
size. Specifically, given a sequence of control input Yt ∈ RN×M ′

, where M ′ is
the length of the input frame, we first feed Yt to an encoder ϕ and transform
along the temporal dimension to get a hidden state pt = ϕ(Yt) ∈ RN . This
hidden state pt thus contains information about the input frame Yt. Moreover,
we define a learnable state table S ∈ RN×C where C is the number of states and
each Si,∀i = 0, . . . , C− 1 corresponds to one specific brain state (shaded in Fig.
2 (c)). Next, we generate the control signal at time t by measuring how hidden
state pt matches the states in S and then weighted summation:

vt =

C−1∑
i=0

αi
ttanh(Si) ∈ RN (5)

where αt = SoftMax
(
(WQpt)

⊤(WKS)
)
∈ RC is the attention weight. Hence,

the control signal vt is the weighted sum of brain states in state table. We further
cascade {vt+m}M−1

m=0 from time t to t+M−1 to form a matrix Vt which matches
the size of Zt in temporal dimension. Finally, to train the model, we define the
following losses. The first one is the Koopman loss:

LKoop =
1

M
∥Zt+1 −KZt − LVt∥ (6)
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where L ∈ RNB×N is the learnable control matrix for generating control output
measurements. Then the classification loss is calculated as follows:

ypred =
1

M
(ϕ1(KZt + LVt))1+

1

M

M−1∑
m=0

αt+m (7)

Lcls = CrossEntropy(ypred,ytrue) (8)

where Eq. 7 means that the classification logits depend on both the evolved
measurements and the attention score. In Eq. 7, ϕ1 transform the dimension of
measurements from NB to C and 1 ∈ RM is an all-one column vector that sums
up the results along time dimension. This mean-pooling in time-dimension can
utilize the information of the whole sequence. Together, the total loss function
L can be represented by (Fig. 2 (d))

L = βLKoop + (1− β)Lcls (9)

where β is the hyperparameter for balancing the Koopman loss and identification
loss. We name our method as SKoop-C, which stands for Scattering Neural
Koopman Operator with Control. An overview of SKoop-C is shown in Fig. 2.

3 Experiments

3.1 Dataset and Experimental Setup

All experiments were conducted using data recruited from the Human Con-
nectome Project - Aging (HCP-A) dataset [5]. HCP-A includes data from 717
subjects, encompassing both fMRI (4,846 time series) and Diffusion Weighted
Imaging (DWI) (717) scans. This rich collection facilitates in-depth analyses of
both functional and structural connectivity. The HCP-A dataset includes data
from four brain tasks associated with memory: VISMOTOR, CARIT, FACE-
NAME, and Resting State. Each fMRI scan consists of 125 time points. In the
following experiments, these tasks are treated as distinct categories in a four-
class classification problem. We partition each into 90 regions using AAL atlas
[19]. Thus, SC is a 90×90 matrix where each element is quantified by the number
of fibers linking two brain regions.

We compare SKoop-C with a variety of current state-of-the-art methods.
(1)GNN variants. We consider Graph Attention Networks (GAT) [20], Graph
Isomorphism Network(GIN) [22], and the general, powerful, scalable graph trans-
former (GPS) [15]. (2) Transformer variants. BolT [4] ,which is a transformer
specially designed for BOLD-signal-related tasks. (3) Time-series-related meth-
ods. We consider Long Short-Term Memory (LSTM) [9] and Temporal Convo-
lutional Network (TCN) [3], which both are designed for time-series tasks. The
evaluation metrics include accuracy (Acc.), precision (Prec.), recall (Rec.), and
F1 score (F1.). The dataset is divided into train/validation/test sets as 6 : 1 : 3.
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Table 1: Performance of competing methods and our SKoop-C in recognizing
four cognitive tasks from functional neuroimages in HCP-A.
Methods GIN GAT GPS TCN LSTM BolT SKoop KAE KAE-C SKoop-C
Acc.(%) 41.91 81.22 76.59 84.27 70.15 92.07 85.36 63.78 87.93 94.12
Prec.(%) 41.52 81.31 76.67 84.44 70.35 92.16 85.49 64.20 88.08 94.32
Rec.(%) 41.71 81.83 76.91 84.24 70.35 92.14 85.71 66.35 88.08 94.85
F1.(%) 41.48 81.30 76.77 84.28 70.30 92.10 85.50 63.46 88.07 94.56

3.2 Recognition of Cognitive Tasks on HCP-A

In this sequence of experiments conducted on the HCP-A dataset, we explore
task-specific recognition by employing an array of methods, namely GIN, GAT,
GPS, TCN, LSTM, BolT, and our SKoop-C model. Table 1 (left) lists the exper-
imental results. The outcomes distinctly highlight the superior performance of
our approach, in contrast to other methods which exhibited a decline in effective-
ness. GIN, GAT, and GPS represent the category of message-passing methods.
Their inputs are the structural connectivity and functional connectivity with
0.5 thresholding instead of the raw BOLD signals for better performance. GIN,
although theoretically profound, has shown limited effectiveness in this context,
achieving an accuracy of 41.91%, while the other two GNN variants achieve sig-
nificantly better performance thanks to the attention mechanism. An obvious
contrast in performance is observed with the introduction of time-series-related
methods like TCN and BolT. These methods are designed to learn temporal
features, which is a critical advantage over the previously discussed message-
passing methods. Note that their inputs are raw BOLD signals different from
the previous GNN-models. While our SKoop-C uses geometric scattering trans-
form with structural connectivity and raw BOLD signals as input, which has
proven to be stable to perturbations on graphs and signals. This stability is
crucial in maintaining the integrity of the extracted features amidst the com-
plexities of cognitive tasks. The Koopman theory and control module also extend
our model’s capability to unravel the intricate dynamics of the system as well as
the ability to retain and recall state-specific information, enhancing the model’s
contextual awareness. The result underscores the power of our methodology in
handling complex cognitive tasks.

3.3 Ablation Studies

We also conducted ablation experiments on our methods to comprehensively ver-
ify the influence of different modules. Table 1 (right) indicates the experiment
results, where KAE is implemented using Koopman operator with measurements
learnt by auto encoder, SKoop is Scattering Neural Koopman operator without
control module and KAE-C is KAE with control. The introduction of the Scat-
tering Neural Koopman Operator (SKoop) without the control module marks
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a significant improvement over KAE. This suggests that the addition of geo-
metric scattering helps in better capturing the intrinsic geometrical features of
the brain’s structural connectivity and its dynamic signals, leading to improved
metrics compared to KAE. And the addition of the state control module to KAE
(marked as KAE-C) results in a notable improvement across all metrics. This
indicates that incorporating control inputs into the Koopman framework allows
for more precise modeling and prediction of brain dynamics. Finally, SKoop-C,
which combines the Scattering Neural Koopman Operator with a control mod-
ule, achieves the highest performance across all metrics. The control module’s
ability to guide state transitions and the geometric scattering’s robust feature
extraction capabilities evidently provide a principled framework for accurately
classifying cognitive tasks.
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Fig. 3: Left: Critical
brain regions (top-8)
linked to four tasks are
depicted. Right: The
histogram of wavelet
frequencies in the con-
trol matrix.

3.4 Interpretation from Control Module

In this section, we utilize the control signal of each state (tanh(Si) in Eq. 5)
to show that our method can provide interpretable visualization of activate re-
gions in different task states. Specifically, we select the top eight regions for each
state that manifest the largest absolute values. Fig. 3 (left) presents the brain
mapping of the selected top 8 regions of each cognitive tasks. For instance, the
selected task-specific regions in VISMOTOR task are mostly located in the so-
matosensory and motor cortex, which is closely aligned with current neuroscience
findings [8]. In addition, we also investigate the frequency characteristics of the
control response when given input of each region. According to the definition
of the control matrix L in Eq. 6, it shows how a region signal in a specific fre-
quency will respond to an input. We therefore display the histogram of wavelet
frequencies in the control matrix in Fig. 3 (right). We observed that the energy
of control is distributed extensively in the low-frequency band, while relatively
sparse in the high-frequency band. Although the examination brain stimulation
and cognitive control [17] is beyond the scope of this paper, the output of our
method offers a new window to understand the complex dynamical system of
human brain using explainable meachine learning approaches.
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4 Conclusion

In conclusion, our research introduced a streamlined method for analyzing brain
dynamics, the Scattering Neural Koopman Operator with Control, utilizing the
power of Koopman operator theory and geometric scattering transform. Our ex-
periments on HCP-A datasets highlighted the method’s efficacy in accurately
capturing and predicting complex brain activities, surpassing current bench-
marks. The findings from our detailed analysis underscore our approach’s robust-
ness against the inherent noise in BOLD signals and reveal insightful patterns
of brain region activation and their responses across different cognitive tasks.
In the future, we will focus on the scalablity in estimating Koopman operator,
which is computationally expensive to estimate Koopman operator as more and
more brain regions are taken into account. The possible solution is to introduce
additional constraints to make it scale up to a fine-grained atlas or even a voxel-
based manner.
Disclosure of Interests. The authors have no competing interests to declare.
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