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Abstract. Deep learning has been extensively used in various medi-
cal scenarios. However, the data-hungry nature of deep learning poses
significant challenges in the medical domain, where data is often pri-
vate, scarce, and imbalanced. Federated learning emerges as a solu-
tion to this paradox. Federated learning aims to collaborate multiple
data owners (i.e., clients) for training a unified model without requir-
ing clients to share their private data with others. In this study, we
propose an innovative framework called SiFT (Serial Framework with
Textual guidance) for federated learning. In our framework, the model
is trained in a cyclic sequential manner inspired by the study of con-
tinual learning. In particular, with a continual learning strategy which
employs a long-term model and a short-term model to emulate human’s
long-term and short-term memory, class knowledge across clients can
be effectively accumulated through the serial learning process. In addi-
tion, one pre-trained biomedical language model is utilized to guide the
training of the short-term model by embedding textual prior knowledge
of each image class into the classifier head. Experimental evaluations on
three public medical image datasets demonstrate that the proposed SiFT
achieves superior performance with lower communication cost compared
to traditional federated learning methods. The source code is available
at https://openi.pcl.ac.cn/OpenMedIA/SiFT.git.

Keywords: Federated learning · Continual learning · Biomedical lan-
guage model

1 Introduction

Human-level performance of deep learning models is often built on large-scale
training data [12, 23]. However, centrally collecting sufficient data remains a
challenge due to privacy concerns. This challenge is even more pronounced in
the medical domain where medical centers are often reluctant to share their



2 X. Li et al.

C2

C1

Local models
aggregation

Central
server 

Local update

Local update

Local update

Local update
and

global integration

Local update
and

global integration

Local update
and

global integration

Download
Upload

a b

C5

C4

C3

Server

C1
C5

C2

C3

C4

Ci i-th client

model upload
model download

model transmission

a b

Fig. 1: Comparison between (a) conventional federated learning framework and
(b) the proposed serial framework SiFT.

medical data with each other [22, 38]. To solve this challenge, federated learning
has been developed by using medical data from multiple medical centers for the
training of a unified deep learning model, under the condition that each medical
center keeps its own data localized and inaccessible by others [1, 16, 21].

The conventional federated learning framework often involves one server and
multiple clients, as illustrated in Figure 1a. Each selected client (e.g., mobile
phone or hospital) trains a local model based on its own dataset, and the server
aggregates all collected local models to obtain a global model. The global model is
then sent back to clients to help refine local models. Such a process is repeated
multiple times to achieve a final global model which is expected to perform
comparably well as a model trained on the collection of all clients’ data. Rep-
resentative federated learning methods include FedAvg [21], SCAFFOLD [11],
FedDyn [1], FedSpeed [27], etc. While these methods work well in the simple in-
dependent and identically distributed (IID) setting for data distributions across
clients, their performance often degrades with slower convergence when data
distributions vary substantially across clients due to client drift [11, 28]. Re-
searchers attempt to mitigate the effect of client drift from multiple aspects,
e.g., by designing proximal terms [1, 16, 27], improving local model generaliza-
tion [15, 40], proposing novel aggregation strategies [8, 32], or constructing a
personalized model for each client [24, 29], etc. In addition, particularly in the
medical imaging domain, researchers started to explore federated learning under
self-supervised or semi-supervised settings [18, 25, 34]. Decentralized federated
learning(DFL) eliminates the need for a central server [4, 19]. But most methods
for DFL still need model synchronization, which leads to high communication
overhead and vulnerability to client drift. Some DFL methods adopt ring-like
network topology [19, 33], but are still limited by the model synchronization. A
few methods that involve cyclically serial training have been proposed [3, 6], but
they are only effective in (near) IID scenarios.

In this study, we propose a new federated learning framework SiFT to learn a
unified image classification model in a serial manner (Figure 1b). Different from
the general federated learning framework which requires a server to communicate
with multiple clients in a parallel manner, the proposed serial framework does
not require the server and sequentially updates the model across clients. Such a
serial federated learning framework is inspired by the study of continual learning
which aims to sequentially learn new knowledge and simultaneously preserve old
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knowledge [17, 36, 39]. In this study, a continual learning strategy based on the
complementary learning system (CLS) theory [13] is utilized. Specifically, two
complementary models are employed, referred to as long-term model and short-
term model respectively. The long-term model is considered as the long-term
memory and short-term model is as the short-term memory of CLS. In particu-
lar, the short-term model (i.e., image classifier) is trained under the guidance of
one pre-trained biomedical language model, such that textual prior knowledge of
medical image classes can be effectively utilized as a train-free classifier head to
help train the feature extractor of the short-term model. Empirical evaluations
on multiple medical image datasets confirm the superior performance of the pro-
posed SiFT framework compared to representative federated learning methods.
Our contributions are summarized below.

• A new and effective serial framework for federated learning that elegantly
integrates the CLS theory and is guided by a language model;

• A continual learning strategy based on the CLS theory to sequentially accu-
mulate knowledge across clients for federated learning;

• Innovatively utilizing prior knowledge from a biomedical language model as
a train-free classifier head to help train the image classifier.

2 Methodology

The objective of federated learning is to train a global model with datasets of
multiple clients, under the condition that the dataset of each client is private and
therefore kept localized. Different from the traditional parallel framework which
uses a server to aggregate parameters of local models from multiple clients,
a novel and effective serial framework for federated learning is proposed here
without requiring the server.

2.1 Overview of the Serial Framework

The proposed federated learning framework works in a serial manner (Figure 1b),
i.e., each client receives the model from the preceding client, updates the model
with a local dataset, and then sends the updated model to the next client.
Such a serial process can be cyclically performed, e.g., the updated model from
the last client can be sent to the first client to start a new round of model
training. In this serial framework, a continual learning strategy inspired by the
complementary learning system (CLS) theory [13] is innovatively applied to help
the model effectively accumulate knowledge across clients. The CLS theory [13]
claims that a short-term memory is used to learn new knowledge and then a long-
term memory is updated to assimilate new knowledge temporarily stored in the
short-term memory. Accordingly, a long-term model and a short-term model
are utilized in the proposed continual learning strategy. The long-term model
needs no training and is updated by the short-term model (Figure 2a). Such a
serial learning framework is expected to be more efficient and effective than the
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Fig. 2: The proposed serial framework for federated learning. (a) Each client
updates the short-term model using its local image data, followed by updating
the long-term model through the EMA strategy, and serially sending the updated
model pair to the next client. (b) Text embeddings of all classes from the pre-
trained biomedical language model form the text-guided train-free classifier head.
(c) The feature extractor of the short-term model is trained under the guidance
of the text-guided classifier head.

aggregation of all collected local models in the conventional parallel federated
learning paradigm, particularly when the data distributions vary significantly
across diverse clients. In particular, the short-term model is trained under the
guidance of textual prior knowledge of all classes. The training of the short-term
model and the update of the long-term model are detailed below.

2.2 Short-term Model with Text-guided Train-free Classifier Head

The short-term model received from the preceding client will be updated with
the dataset of the current client. For the m-th client, the short-term model (i.e.,
image classifier) includes a trainable feature extractor Fm(·), a frozen projector
P (·), and a text-guided train-free classifier head H(·). While the feature extractor
Fm conventionally consists of multiple convolutional layers, the projector P and
the classifier head H are innovatively designed.

Specially, a pre-trained and fixed biomedical language model is utilized to
construct the classifier head H(Figure 2b). Inspired by the successful applications
of vision-language model CLIP [23] to natural image classification, we hypoth-
esize that prior knowledge of medical categories in the pre-trained biomedical
language model may help the medical image classifier more effectively learn the
knowledge from medical images. Here, the prior knowledge of categories and the
categorical relationships learned by the biomedical language models are natu-
rally embedded into the classifier head of the image classifier as follows. Suppose
there are totally C medical image classes to be learned by the image classi-
fier, and denote by tc the textual description of the c-th image class. tc can
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be simply the class name or a rich description of the class by querying a large
language model like GPT-4 [2] or consulting a medical expert. With tc as the
input to the pre-trained biomedical language model, the corresponding output
vector wc ∈ Rd from the biomedical language model is collected and utilized
as part of the weight parameters in the classifier head. After collecting all the
class embeddings, the weight matrix W of the classifier head is obtained as
W = [w1 w2 . . . wC ] ∈ Rd×C , where d is the length of the input to the classifier
head and also the dimension of the output vector from the biomedical language
model. Note that the weight matrix W contains the textual prior knowledge of
the C image classes obtained from the pre-trained biomedical language model.
In order to preserve the textual prior knowledge from being altered, the con-
structed classifier head remains frozen and undergoes no changes during the
training process of the short-term model.

Considering that the input dimension d of the classifier head is pre-determined
by the output dimension of the biomedical language model and therefore may
be different from the output dimension D of the image feature extractor F , the
projector P is introduced to help align image representations with the textual
representations. Inspired by successful applications of random projection [20,
26], here a randomly initialized and frozen matrix with shape D × d is used to
represent the projector, which is proved to be better than a trainable projector
(see Figure 4d in the ablation study).

Then, given any input image x to the image classifier, the output of the
classifier can be obtained by

pc(x) =
exp (⟨wc, P (Fm(x))⟩ /τ)∑C

k=1 exp (⟨wk, P (Fm(x))⟩ /τ)
, (1)

where pc(x) denotes the c-th element of the image classifier output p(x) =
[p1(x) p1(x) . . . pC(x)]

⊺, and ⟨a,b⟩ represents the cosine similarity between any
two vectors a and b. The cosine similarity is used here following the applications
of vision-language models [23]. τ is the temperature coefficient. With the help of
the frozen projector P and the train-free classifier head H, the trainable feature
extractor Fm can be easily trained by the cross-entropy loss over the training
set of each client (Figure 2c).

2.3 Update of the Long-term Model

The long-term model is also sent from the preceding (m−1)-th client to the cur-
rent m-th client for update. Based on the CLS theory [13], the trained short-term
model representing the short-term memory at the m-th client will be used to up-
date the long-term model (i.e., long-term memory). Here suppose the long-term
model shares the same frozen projector P and classifier head H with short-term
model. Therefore, only the feature extractor of the long-term model needs to be
updated. Also suppose the feature extractor of the long-term model has the same
structure as that of the short-term model. As in general continual learning [5,
31], the aim of updating the long-term model is to learn new knowledge and
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preserve old knowledge simultaneously. Following the strategy of accumulating
old knowledge in self-supervised learning methods like MoCo [9], the exponen-
tial moving average (EMA) is utilized to update the long-term model. Formally,
denote by θm the parameters of the trained short-term model at the m-th client,
and θ the parameters of the long-term model. Then the long-term model can be
updated by EMA as follows,

θ ← βθ + (1− β)θm , (2)

where the hyperparameter β ∈ (0, 1) is the smoothing factor of EMA and often
set a higher value (e.g., 0.9) to better preserve old knowledge in the long-term
model.

During inference, the long-term model (i.e., feature extractor updated from
the short-term model followed by the frozen projector and the text-guided train-
free classifier head) can be used to predict the class of any test image.

2.4 Experimental Setup

Datasets. Our method was evaluated on three widely-used medical datasets,
including HAM10000 [30], OrganCMNIST [35], and OrganSMNIST [35] (See
Table 1 in the Supplementary Material for dataset details). Note that HAM10000
is a highly class-imbalanced dataset.
Data distributions. By default, suppose there are totally 10 clients, and each
training dataset is partitioned into 10 subsets, with one subset for one client. For
the HAM10000 [30], given its highly class-imbalanced distribution property, each
client’s data distribution adheres to the independent and identically distributed
(IID) setting. With OrganCMNIST [35] and OrganSMNIST [35], to more re-
alistically simulate real-world data settings following previous studies [14], the
Dirichlet distribution is employed to adjust the distribution of sample size over
clients for each class. Specifically, we set the Dirichlet distribution coefficient α
to 0.5 and 0.3 respectively for each of the two datasets. A smaller coefficient α
indicates stronger level of data heterogeneity across the clients for each class.
Implementation. Following previous studies [1, 7, 27] and for fair comparisons,
ResNet18 [10] was employed as the model backbone in all experiments. We
adapted the BioLinkBERT-large [37] as the biomedical language model to con-
struct the train-free classifier head, where the textual class names were merely
used as semantic information by default. For all federated learning methods, one
federated learning round refers to the completion of a learning iteration where
all clients have participated, and local learning epochs refer to the epochs to
learn the model at each client within a learning round. SGD optimizer was used
for model training, with initial learning rate 0.1 for the first learning round and
reduced to 0.01 for subsequent rounds. For existing federated learning methods,
the initial learning rate was set to 0.1 and then decayed with factor 0.998 over
learning rounds. For all methods, batch size was 128, and unless mentioned oth-
erwise, local learning epochs were set to 10. Given the divergent convergence
rates among different methods, the number of learning rounds was set to 300 for
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Table 1: Performance comparison in balanced accuracy (%). “Dir α” denotes the
training data distribution follows Dirichlet distribution and the coefficient is α.
Mean and standard deviation over three runs are reported.

Method HAM10000 OrganCMNIST OrganSMNIST
IID Dir 0.5 Dir 0.3 Dir 0.5 Dir 0.3

FedAvg[21] 56.602±1.90 89.288±0.44 88.992±0.38 71.338±0.07 69.381±0.91
FedProx[16] 58.456±1.50 89.296±0.29 88.820±0.23 71.527±0.32 70.213±0.36
SCAFFOLD[11] 58.018±1.41 88.986±0.53 88.242±0.04 69.685±0.53 67.307±1.08
FedDyn[1] 57.076±2.91 89.435±0.31 88.594±0.16 72.285±0.36 72.319±1.10
FedSpeed[27] 55.723±1.58 89.458±0.87 90.049±0.44 72.784±0.92 73.927±0.16

SiFT 63.625±1.78 91.522±0.10 90.234±0.25 74.825±0.65 74.595±0.48

Table 2: The number of training rounds required to achieve the target balanced
accuracy.

Method
HAM10000 OrganCMINST

IID Dir0.5 Dir0.3
25% 35% 45% 55% 55% 65% 75% 85% 55% 65% 75% 85%

FedAvg[21] 22 42 50 158 24 34 48 104 31 39 60 123
FedProx[16] 29 44 63 158 25 33 52 92 28 39 59 113
SCAFFOLD[11] 29 44 68 174 28 41 59 144 38 51 70 148
FedDyn[1] 19 38 45 97 13 16 24 44 15 21 30 78
FedSpeed[27] 63 114 145 275 30 39 66 119 34 44 64 116

SiFT 3 5 7 12 2 3 5 12 8 13 20 23

existing methods to ensure convergence, while only set to 50 for the proposed
SiFT due to its faster convergence. Balanced accuracy, i.e., average of recall over
all classes, was adapted as the evaluation metric due to its ability to assess model
performance in the presence of imbalanced data distributions across classes.

2.5 Experiment Results

Effectiveness evaluation. To demonstrate the effectiveness of the proposed
SiFT, a variety of traditional federated learning methods were used for com-
parison, including FedAvg [21], FedProx [16], FedDyn [1], SCAFFOLD [11] and
FedSpeed [27]. As shown in Table 1, SiFT outperforms all the federated learning
baselines on all the datasets with various settings. The performance improvement
is more significant on HAM10000 probably because the dataset is highly class-
imbalanced compared to the others. These results support that the proposed
SiFT framework is a strong alternative to existing client-server based framework
for federated learning.
Convergence speed. In addition to classification performance, convergence
speed is also concerned in federated learning, as faster convergence often implies
lower communication cost. As shown in Table 2, to achieve the same level of clas-
sification performance, SiFT requires much fewer training rounds, e.g., around
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Fig. 4: Ablation study of the proposed method on HAM10000 (IID), OrganCM-
NIST (α = 0.3) and OrganSMNIST (α = 0.5).

only one-seventh of the rounds required to achieve similar performance compared
to the highly performing FedDyn [1] on HAM10000. This suggests that SiFT con-
verges significantly faster than the top-performing federated learning methods,
which also implies a substantial reduction in communication cost. This is also
confirmed in Figure 3 (left) which demonstrates the evolution of the balanced
accuracy on one test set for each method during the training process.
Sensitivity study. The proposed SiFT is largely insensitive to the value choice
of the smoothing coefficient β in EMA (Equation 2), as demonstrated in Figure 3
(middle). In addition, as shown in Figure 3 (right), when varying the number
of local training epochs E (but keeping the multiplication of E and federated
learning rounds constant), the final long-term model performs stably well.
Ablation study. Ablation studies were performed to confirm the effect of each
key component in the proposed SiFT framework. When removing the long-term
model (‘Single’), which means only short-term model is updated sequentially
and evaluated, the balanced accuracy degrades clearly (Figure 4a), supporting
the necessity of using two complementary networks. When replacing the frozen
projector and the train-free classifier head by a trainable classifier head without
the guidance of the biomedical language model (‘TrainableHead’), or replacing
the train-free classifier head by a randomly initialized and fixed classifier head
(‘Random’), the final long-term model again performs worse (Figure 4b&c), con-
firming the effect of the text-guided train-free classifier head. In addition, replac-
ing the frozen projector by a trainable projector (‘TrainableProj’) also results in
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degraded performance (Figure 4d), probably because trainable projector intro-
duces more model parameters which more likely cause over-fitting.

3 Conclusion

This paper proposes a novel serial framework called SiFT for federated learning.
In this framework, the paired short-term and long-term models are sequentially
updated across clients to accumulate knowledge. The short-term model is effec-
tively trained and updated with the guidance of textual prior knowledge from
a pre-trained biomedical language model, and the long-term model is updated
by the short-term model based on the exponential moving average strategy at
each client. Extensive evaluations on three medical image datasets confirm the
effectiveness and communication efficiency of the proposed framework. More ef-
fective continual learning strategies and textual prior knowledge from richer tex-
tual description may further improve the efficacy of the serial federated learning
framework, which will be investigated as future work.
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