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Abstract. In the realm of medical data analysis, medical cross-modal
hashing (Med-CMH) has emerged as a promising approach to facilitate
fast similarity search across multi-modal medical data. However, due to
human subjective deviation or semantic ambiguity, the presence of noisy
correspondence across medical modalities exacerbates the challenge of
the heterogeneous gap in cross-modal learning. To eliminate clinical noisy
correspondence, this paper proposes a novel medical cross-modal prompt
hashing (MCPH) that incorporates multi-modal prompt optimization
with noise-robust contrastive constraint for facilitating noisy correspon-
dence issues. Benefitting from the robust reasoning capabilities inherent
in medical large-scale models, we design a visual-textual prompt learning
paradigm to collaboratively enhance alignment and contextual awareness
between the medical visual and textual representations. By providing tar-
geted prompts and cues from the medical large language model (LLM),
i.e., CheXagent, multi-modal prompt learning facilitates the extraction of
relevant features and associations, empowering the model with actionable
insights and decision support. Furthermore, a noise-robust contrastive
learning strategy is dedicated to dynamically adjusting the intensity of
contrastive learning across modalities, thereby enhancing the contrast
strength of positive pairs while mitigating the influence of noisy corre-
spondence pairs. Extensive experiments on multiple benchmark datasets
demonstrate that our MCPH surpasses the state-of-the-art baselines.

Keywords: Medical Cross-Modal Hashing · Noisy Correspondence Learn-
ing · Large Language Model · Prompt Learning · Contrastive Learning

1 Introduction

Driven by the gradual improvement of medical information storage standards,
multi-modal medical data have exhibited an unprecedentedly explosive growth.
In recent years, the escalating demand has emerged for methodologies aimed at
diminishing storage necessities while enabling rapid and accurate medical data
⋆⋆ B Corresponding authors: Bingzhi Chen and Guangming Lu.
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Fig. 1. Illustrations of (a) Conventional Contrastive Learning (CL), (b) CL with Noisy
Correspondence, (c) Conventional Noisy Correspondence Learning (NCL), and (d) The
proposed MCPH. Instead of selecting and rectifying the noisy correspondence, our
MCPH approach effectively incorporates the multi-modal prompt optimization with
noisy-robust contrastive constraint to further enhance noisy correspondence learning.

retrieval. Therefore, the exploration of medical cross-modal hashing (Med-CMH)
[13,32] holds substantial research value and clinical relevance in the medical
domain. In clinical settings, Med-CMH aims to retrieve semantically similar
medical instances across different modalities. Technically, Med-CMH can provide
previously similar images and corresponding treatment records to physicians,
thereby enhancing the efficiency and accuracy of decision-making.

Typically, the primary challenges of Med-CMH involve bridging the hetero-
geneity gap across different modalities [17,25]. Extensive deep cross-modal hash-
ing (CMH) methods [1,28,22] have been developed to facilitate fast similarity
search across different modalities, ranging from natural scenes to medical set-
tings. Despite achieving progress in Med-CMH [27,30,35], their success relies on
an implicit assumption, i.e., the semantic correspondence across modali-
ties of training data is ideally correct and noise-free. Due to various fac-
tors such as inconsistent data sources, human subjective deviation, and semantic
ambiguity, it is inevitable to encounter mismatched pairs erroneously considered
as matches during the medical data collection process [9,2,33], termed as “noisy
correspondence”. As shown in Fig. 1, conventional NCL studies focus on di-
viding the training data into clean and noisy subsets, followed by rectifying the
noisy correspondence labels. That is, the key challenge lies in estimating and
selecting accurate soft correspondence labels for these noisy data pairs. How-
ever, the effectiveness of these methods depends on their respective noise pair
selection algorithms, which may inadvertently introduce additional noise.

In this paper, we propose a medical cross-modal prompt hashing (MCPH)
framework, which dexterously incorporates multi-modal prompt optimization
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with noisy-robust contrastive constraint to enhance noisy correspondence learn-
ing. In comparison to the state-of-the-art methods [9,7,33], the proposed MCPH
method mainly benefits from two well-established prompt mechanisms, i.e., vi-
sual prompt learning (VPL) and textual prompt learning (TPL), which are
designed to enhance alignment and contextual awareness between the medical
visual and textual representations. Benefiting from the robust reasoning capa-
bilities inherent in medical large language models (LLM) such as CheXagent,
multi-modal prompt learning enables the extraction of pertinent features and as-
sociations, thereby empowering the model with actionable insights and decision
support. Furthermore, we propose a noise-robust contrastive learning strategy to
dynamically adjust the intensity of contrastive learning across modalities. This
strategy aims to enhance the contrast strength of positive pairs while mitigating
the influence of noisy correspondence pairs. Our proposed MCPH framework
is comprehensively evaluated on multiple large-scale datasets, i.e., Open-I and
MIMIC-CXR. The promising performance collectively demonstrates the effec-
tiveness and superiority of our MCPH over state-of-the-art algorithms.

2 Related Work
2.1 Cross-modal Hashing&Retrieval

With the powerful representation ability and privileged efficiency, CMH has
been extensively researched and typically categorized into two main types: shal-
low CMH methods [34,19,31] and deep CMH methods [10,15,1,28,22,29]. Corre-
spondingly, shallow CMH methods always employ a two-stage learning paradigm
involving feature extraction and hash code learning, while deep CMH methods
leverage an end-to-end training manner to generate informative deep features.
For example, DAPH [29] generates higher-quality proxy hash codes to improve
the retrieval performance. DCHMT [28] explores two transformer encoders to
encode images and texts to enhance correlation modeling. MITH [22] leverages
both intra- and inter-modal similarity preservation from a multi-granularity per-
spective within a unified transformer-based framework. Nevertheless, the above
works overlook the challenge of noisy correspondence in medical multi-modal
data, which can significantly degrade the performance of Med-CMH tasks.

2.2 Noisy Correspondence Learning

The noisy correspondence problem refers to mismatched pairs incorrectly identi-
fied as positive ones, which can reduce the generalization of deep learning models.
Initially, Huang et al. [9] reveal this emerging challenging direction and propose
the NCR method to correct the soft correspondence label. DECL [23] presents an
uncertainty-based approach to model the uncertainty of cross-modal correspon-
dence to predict the correct correspondence of paired data. MSCN [7] explores
the meta-learning paradigm to provide reliable similarity scores. Furthermore,
BiCro [33] rectifies the noisy correspondence labels by soft correspondence la-
bel estimation giving only noisily-collected data pairs. Instead of recalibrating
the noisy correspondence, our MCPH aims to enhance Med-CMH by effectively
leveraging the robust reasoning capabilities inherent in medical LLM by the
multi-modal prompt optimation with noise-robust contrastive constraint.
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Fig. 2. Illustration of the proposed Medical Cross-Modal Prompt Hashing (MCPH)
framework with robust noisy correspondence learning for the task of Med-CMH. Gen-
erally, the proposed MCPH is composed of four components, i.e., cross-modal feature
learning, visual-textual prompt learning, visual-textual prompt learning, and visual-
textual prompt learning.

2.3 Prompt Learning with LLM
Prompt learning [14,16,20,26,3] mainly involves integrating additional tokens
such as handcrafted instructions or learnable prompts to fine-tune pre-trained
models for downstream tasks using LLM. This strategy eliminates the necessity
for substantial modifications to the model’s parameters, thus avoiding catas-
trophic forgetting [8]. For instance, CoOp [37] is the earliest work to employ
trainable text prompt vectors for few-shot transferring based on CLIP. Co-
CoOp [36] underscores the inferior performance of CoOp on novel classes and
proposed conditional context optimization on image instances. Recent studies
such as DCP [21] and MaPLe [12] further promote strong coupling between the
vision-language prompts. However, the effectiveness of multi-modal prompts in
the domain of Med-CMH remains to be under-explored and less investigated.

3 Methodology

3.1 Problem Definition
Given a dataset Di = {(Ii, Ti; Ci; li)}Ni=1, where N indicates the number of train-
ing samples, (Ii, Ti) is the i-th medical image text pair, Ci denotes the image
captions generated offline by CheXagent [4], and li indicates the associated la-
bel matrix with Q categories. In practice, it is unavoidable to introduce noisy
correspondence into the training data, which renders supervision information
unreliable or uncertain in Med-CMH. Suppose yi ∈ {0, 1} denotes the correspon-
dence score, which indicates that the medical pair (Ii, Ti) is positively correlated
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(yi = 1) or not (yi =0). Additionally, an N ×N similarity matrix S is generated
based on labels. The main objective of our work is to obtain unified noisy-free
hash codes by mapping image and text data from a high-dimensional space into
a common K-bit discrete Hamming space, where K is the length of hash codes.

3.2 Cross-Modal Feature Learning
As illustrated in Fig. 2, we utilize the pre-trained VIT [6] and GPT-2 [24] as
image and text encoders to extract feature representations, i.e., Fv

i = [gvi , Z
v
i ],

F t
i = [gti , Z

t
i ], and Fc

i = [gci , Z
c
i ], where g represents the global class embeddings,

and Z represents the sequence of local token embeddings. The obtained image
captions can be considered as additional text modalities to enhance the original
textual features. Moreover, we implement a weight-sharing strategy between the
text and caption encoders to ensure the consistency of textual representations.

3.3 Visual-Textual Prompt Learning
By freezing the backbone network during fine-tuning, we design two prompt
mechanisms, i.e., visual prompt learning (VPL) and textual prompt learning
(TPL), capable of enhancing alignment and contextual awareness between the
medical visual and textual representations.

Visual Prompt Learning. To learn the visual context prompts, we design
a visual adapter Fv to transfer feature prompts from caption modality to image
modality, which is implemented as a learnable linear layer to map dc dimensional
inputs to dv. As such, the visual context prompts can be defined as pvi,j =
Fv(Z

c
i,j−1). In addition, these visual context prompts are further introduced in

deeper transformer layers of the image encoder alongside input image tokens,

[gvi,j , Z
v
i,j ,_] = Encoderv

(
[gvi,j−1, Z

v
i,j−1, p

v
i,j−1]

)
, j = k, k + 1, ...n, (1)

where k represents k-th depth of transformer layers, n is the total number of
layers, and “_” indicates that the output tokens are discarded.

Textual Prompt Learning. By contrast, TPL introduces a textual adapter
Ft to generate textual context prompts, which consists of a down projection layer,
a linear rectification function, and an up projection layer, i.e., pti,j = Ft(Z

c
i,j−1).

Then, the global text features are rectified by global caption features to enhance
the noisy correspondence learning, i.e., gti,j = Ft(g

c
i,j) + gti,j . Moreover, the tex-

tual context prompts and the rectified global text features are incorporated in
deeper transformer layers of the text encoder alongside input text tokens, i.e.,

[gti,j , Z
t
i,j ,_] = Encodert

(
[gti,j−1, Z

t
i,j−1, p

t
i,j−1]

)
, j = k, k + 1, ...n. (2)

3.4 Noise-Robust Contrastive Learning
To further strengthen the prompt contrast of positive pairs while mitigating
the impact of noisy correspondence pairs, we propose a noise-robust contrastive
learning strategy that can dynamically fine-tune the intensity of contrastive
learning across modalities. Specifically, we utilize a residual multi-layer percep-
trons (ResMLP) to align the global embeddings g̃(∗)

i into the same dimension-
alities, i.e., g̃(∗)

i = ResMLP(g(∗)
i ). Based on the above preprocessing operations,

the noise-robust contrastive learning strategy can be defined as follows:
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Lnrcl =
1

M

M∑
i=1

(
− log

exp((g̃vi )
⊤g̃ti/τ̂i)∑M

c=1 exp((g̃
v
i )

⊤g̃tc/τ̂i)
− log

exp((g̃ti)
⊤g̃vi /τ̂i)∑M

c=1 exp((g̃
t
i)

⊤g̃vc /τ̂i)

)
, (3)

where τ̂i = τ + γ · Ni is the adaptive temperature parameter, τ indicates the
original temperature parameter, and γ is a hyper-parameter. It is noted that Ni

is calculated by Jensen-Shannon divergence [18] between the extracted global
caption features gti and global text features gci ,

Ni = Di
JS(g

t
i ||gci ) =

1

2

(∑
j

gtij log
2gtij

gtij + gcij
+

∑
j

gcij log
2gcij

gtij + gcij

)
∈ [0, 1]. (4)

3.5 Cross-Modal Hashing Learning
The purpose of Med-CMH is to map features into the Hamming space, ensuring
that the distance relationships between hash codes reflect the semantic similarity
of different modalities. To this end, we adopt a localized token aggregation (LTA)
strategy with a two-layer transformer [22] to localize the preservation of the most
crucial implicit semantic knowledge from the global embeddings to form the local
embeddings. Then, a hashing linear projection layer with the tanh activation
function is designed to map local embeddings to local semantic features f (∗)

i in
the K-bit Hamming space. Similarly, we introduce a hashing linear projection
layer to decompose the projected features into global semantic features h(∗)

i . Both
global and local features are integrated to learn the unified hash code,

bi = sign(λ(hv
i + ht

i) + (1− λ)(fv
i + f t

i )), λ ∈ [0, 1], (5)

where λ denotes a learnable hyper-parameter. Moreover, the quantization loss is
used to learn uniform compact hash codes,

Lquan =
1

KM

M∑
i=1

(
∥bi −

1

2
(hv

i + fv
i )∥22 + ∥bi −

1

2
(ht

i + f t
i )∥22

)
, (6)

where M is the batch size. In addition, the intra-modal similarity preservation
loss aims to preserve semantic similarities within modalities,

Lintra = − 1

MN

N∑
i=1

M∑
j=1

(
SijΩ

(∗)
ij − log

(
1 + eΩ

(∗)
ij

))
, (7)

where Ω(∗)
ij = 1

2 (f
(∗)
i )Tf (∗)

j indicates the inner product among local semantic rep-
resentations. Moreover, inter-modal similarity preservation is designed to pre-
serve semantic similarities across modalities, that is,

Linter = − 1

MN

( N∑
i=1

M∑
j=1

(
SijΘij − log

(
1 + eΘij

))
+

N∑
i=1

M∑
j=1

(
SijΦij − log

(
1 + eΦij

)))
,

(8)

where Θij = 1
2 (h

t
i)

Thv
j and Φij = 1

2 (h
v
i )

Tht
j denotes the inner product among

global semantic representations. Overall, the training objective of our MCPH
approach encompasses a combination of various loss functions, i.e.,

Ltotal = α · Lquan + β · Linter + Lintra + Lnrcl, (9)

where α and β are trade-off hyper-parameters during the training phase.
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Table 1. Comparisons of mAP (%) scores on Open-I with different noise rates (NR).
The best and second-best results are highlighted in bold and underlined.

Methods Ref. NR:0% NR:20% NR:50%
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I → T

DCHMT MM’22 41.04 42.22 42.25 38.64 39.38 40.01 35.37 35.69 35.48
DAPH SIGIR’23 54.45 54.47 53.26 47.36 50.28 52.41 45.38 43.01 45.22
MITH MM’23 60.15 58.96 58.95 53.22 52.17 53.98 44.79 44.25 47.43

MCPH Ours 62.86 63.42 64.04 58.24 59.13 60.44 54.24 54.66 55.94
↑ +2.71 +4.46 +5.09 +5.02 +6.96 +6.46 +8.86 +10.41 +8.51

T → I

DCHMT MM’22 46.15 46.81 47.49 43.29 43.90 44.35 37.65 36.34 36.14
DAPH SIGIR’23 56.57 58.99 59.28 51.38 55.71 56.85 44.50 49.03 51.56
MITH MM’23 63.66 62.43 62.97 59.31 59.29 57.72 53.73 53.50 52.54

MCPH Ours 66.13 66.11 66.73 62.41 63.37 62.47 58.56 58.50 58.99
↑ +2.47 +3.68 +3.76 +3.10 +4.08 +4.75 +4.83 +5.00 +6.45

Table 2. Comparisons of mAP (%) scores on MIMIC-CXR with different noise rates
(NR). The best and second-best results are highlighted in bold and underlined.

Methods Ref. NR:0% NR:20% NR:50%
16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

I → T

DCHMT MM’22 56.52 59.63 59.76 52.43 55.63 55.77 50.62 53.62 53.70
DAPH SIGIR’23 60.32 62.00 62.11 58.51 60.56 61.51 55.25 55.76 56.89
MITH MM’23 59.27 60.55 61.56 60.40 61.80 58.26 57.51 59.91 58.32

MCPH Ours 66.21 66.03 66.64 65.07 65.51 65.74 64.62 64.71 64.99
↑ +5.89 +4.03 +4.53 +4.67 +3.71 +4.23 +7.11 +4.80 +6.67

T → I

DCHMT MM’22 55.74 59.46 59.45 51.85 54.69 55.02 50.07 52.81 52.89
DAPH SIGIR’23 60.02 61.40 61.85 57.12 58.83 59.69 55.39 56.34 56.91
MITH MM’23 60.13 60.20 58.09 58.00 59.40 60.17 56.34 58.68 58.87

MCPH Ours 63.89 64.35 64.94 63.03 63.50 63.81 62.55 62.73 64.04
↑ +3.76 +2.95 +3.09 +5.03 +4.10 +3.64 +6.21 +4.05 +5.17

4 Experiments

4.1 Datasets & Baselines & Evaluation Metrics

To comprehensively evaluate the performance of our method, we conduct com-
parative results on two widely-used benchmark datasets, i.e., Open-I and MIMIC-
CXR. In our experiments, we randomly select 500 pairs in Open-I [5] as the
query set, the remaining 2,318 pairs as the retrieval set, and 1,000 pairs sam-
pled from the retrieval set to form the training set. From the MIMIC-CXR [11]
dataset, 2,000 pairs are randomly sampled as the query set, the rest 87,286 pairs
formed the retrieval set, and 10,000 pairs for training. We compare the pro-
posed MCPH method with several state-of-the-art transformer-based methods,
including DCHMT [28], DAPH [29], and MITH [22]. Following [22], we adopt the
mean average precision (mAP) as the comparison metric for two cross-modal re-
trieval tasks, i.e., image-to-text retrieval (I → T) and text-to-image retrieval (T
→ I). By randomly shuffling the training images and texts, we compare various
methods under different noise rates, i.e., 20% and 50%.
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Table 3. Ablation studies of mAP (%) on Open-I using 16 bits with 20% noise rate,
where Variant-I indicates the BASE model, Variant-II denotes “BASE+TPL”, Variant-
III represents “BASE+VPL”, and Variant-IV indicates “BASE+VPL+TPL”.

Variants Variant-I Variant-II Variant-III Variant-IV MCPH

I → T 54.56 55.45 56.74 57.57 58.24

T → I 56.24 60.34 60.77 61.39 62.41
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Fig. 3. Parameter analysis (%) on the Open-I dataset with 20% noise rate.

4.2 Comparisons with State-of-The-Arts
In this part, we evaluate the performance of the proposed MCPH framework on
the Open-I and MIMIC-CXR datasets with mAP scores under different noise
rates, and the comparative results are summarized in Table 1 and Table 2.
From these tables, we can observe that the proposed MCPH significantly outper-
forms all state-of-the-art baselines with all cases on two datasets. Specifically, our
MCPH achieves the highest mAP scores on Open-I and MIMIC-CXR datasets
with all hash code lengths in conventional settings, which can verify the effective-
ness of our MCPH for addressing Med-CMH tasks. Due to the influence of noisy
correspondence, almost all comparative methods suffer from varying degrees of
performance degradation under different noise rates. Nonetheless, our MCPH
not only achieves the best overall performance under low noise but also exhibits
superior robustness under relatively high noise. When the noise rate is 50%, the
proposed MCPH framework surpasses the second-best method on MIMIC-CXR
by the mean mAP of 4.82%, 4.20%, 6.19% for I → T, and 3.27%, 4.26%, 5.14%
for T → I, respectively. The above comparative results consistently demonstrate
the superiority and generalizability of our MCPH framework.

4.3 Ablation Studies & Parameters Analysis
We conduct comprehensive ablation studies by systematically evaluating the
impact of each component in MCPH. As shown in Table 3, we can conclude that
all designed modules can complement and reinforce each other, which further
verifies the combined effects of our MCPH method. Moreover, we empirically
perform parameter analyses to analyze the effects of three key hyper-parameters,
i.e., α, β, and γ, as shown in Eq. (9) and Eq. (3). The comparative results are
illustrated in Fig. 3. It can be observed that our MCPH method achieves the
best performance when α = 0.1, β = 10, and γ = 200, respectively. Hence,
we can summarize that our MCPH can obtain preferable performance by an
optimal combination of these hyperparameters. More experimental results and
implementation details are shown in the supplementary material.
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5 Conclusion

This paper identified a widely-exist but rarely-explored problem in Med-CMH,
i.e., noisy correspondence. To overcome this challenge, we presented a robust
and reliable medical cross-modal prompt hashing that benefits greatly from the
potential synergistic efficacy of multi-modal prompt optimization with noise-
robust contrastive constraint for embracing the robustness against noisy corre-
spondence. Furthermore, extensive experiments were carried out to validate the
effectiveness of our MCPH framework in mitigating noisy correspondence.
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