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Abstract. Diffusion models, originally introduced for image generation,
have recently gained attention as a promising image denoising approach.
In this work, we perform comprehensive experiments to investigate the
challenges posed by diffusion models when applied to medical image de-
noising. In medical imaging, retaining the original image content, and
refraining from adding or removing potentially pathologic details is of
utmost importance. Through empirical analysis and discussions, we high-
light the trade-off between image perception and distortion in the context
of diffusion-based denoising. In particular, we demonstrate that standard
diffusion model sampling schemes yield a reduction in PSNR by up to
14% compared to one-step denoising. Additionally, we provide visual ev-
idence indicating that diffusion models, in combination with stochastic
sampling, have a tendency to generate synthetic structures during the
denoising process, consequently compromising the clinical validity of the
denoised images. Our thorough investigation raises questions about the
suitability of diffusion models for medical image denoising, underscor-
ing potential limitations that warrant careful consideration for future
applications.
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1 Introduction

Various medical imaging applications, such as low-field magnetic resonance imag-
ing (MRI) [19, 13, 21] or low-dose computed tomography (CT) [12, 26] inherently
suffer from a low signal-to-noise-ratio (SNR). Thus, denoising techniques are
commonly employed during or after reconstruction to achieve diagnostic image
quality [17, 27]. Conventional denoising strategies include non-local means [18,
12], wavelet-based denoising [11, 2], or iterative techniques [10, 5].

In recent years, deep learning (DL)-based approaches have emerged as lead-
ing approaches for image denoising, demonstrating state-of-the-art performance
through the extraction of intricate features from extensive datasets [24]. Super-
vised learning techniques necessitate pairs of noisy and clean images for training.
However, the acquisition of noise-free target images can be challenging or even
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infeasible in the context of medical imaging. In such scenarios, self-supervised
learning methods like Noise2Void [14], Noise2Noise [15], or Noise2Self [4] can
be applied to exploit the inherent properties or structure of the data, circum-
venting the need for noise-free ground-truth images. Alternative approaches use
Stein’s unbiased risk estimator (SURE) to obtain outcomes closely resembling
those achieved through supervised training [21].

Diffusion models, initially introduced as generative models, have gained wide-
spread popularity in diverse scientific applications. Originally proposed for gen-
erating meaningful data samples from random noise [25, 9], diffusion models are
now being extensively employed for image denoising [20, 30, 16], also in the con-
text of MRI [29, 8, 7].

In medical imaging, preserving the original image content and avoiding the
addition or removal of potentially pathological details is crucial. Thus, the trade-
off between the perceptual quality provided by diffusion models and image fi-
delity has to be carefully considered. In this work, we investigate the application
of diffusion models for medical imaging with a focus on MRI denoising. Based on
comprehensive experiments using both synthetic and real MRI data, we present
two main findings:

1. The iterative sampling, a component of the reverse process in diffusion mod-
els, does not contribute to improved denoising quality. On the contrary, it
degrades the results.

2. The inherent stochastic nature of the sampling process introduces alterations
in image content, yielding a loss in data fidelity.

2 Diffusion Models

A diffusion model characterizes a parameterized Markov chain comprising T
discretized states x0,...,T , that can be trained to generate images aligning with a
learned data distribution [23, 9, 25]. The forward diffusion process, represented
by q(xt|xt−1), incrementally adds Gaussian noise to the samples at each state,
progressively corrupting the signal. In contrast, the reverse diffusion process aims
to recover the prior signal pθ(xt−1|xt), where θ denotes the parameters of the
neural network optimized to estimate p. The transition between each state is
determined by a pre-defined noise schedule β1,...,T , which is commonly modelled
to increase linearly between two given values.

Forward process: Given a sample xt at state t and a noise schedule β1,...,T ,
the standard diffusion process of length T is defined by:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) . (1)

Using the reparameterization trick [9], a sample at state t can be directly calcu-
lated from clean image x0:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) , where αt = 1− βt , ᾱt =

T∏
t=1

αt . (2)
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Thus, we can express xt as:

xt =
√
ᾱtx0 +

√
(1− ᾱt)ϵt , where ϵt ∼ N (0, 1) . (3)

Here,
√
1− ᾱt defines the standard deviation of the noise at each state xt.

During training, a neural network learns to predict either the clean image x0 or
the noise ϵt, given a noisy input image xt corresponding to a randomly sampled
state t. Temporal information is incorporated at each network layer to convey
the position in the diffusion process. Consequently, the model input comprises
both the input image xt and the corresponding timestep t. During inference,
the noise is progressively removed from a given noisy image following a defined
reverse sampling process.

Reverse process: In the reverse process, the network prediction is used to
model the mean of state xt−1, given xt and t as inputs. For diffusion denoising
probabilistic models (DDPMs) [9], the sampling can be performed as follows:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
t I) ,

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵ
(t)
θ

)
, (4)

σ2
t =

1− ᾱt−1

1− ᾱt
βt ,

where ϵ
(t)
θ denotes the model prediction for ϵt. Hence, we can sample xt−1 as:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵ
(t)
θ

)
+

√
1− ᾱt−1

1− ᾱt
βtz , (5)

where z ∼ N (0, 1).
Diffusion denoising implicit models (DDIMs) [25] share the same training

procedure as DDPMs but use implicit sampling:

xt−1 =
√
ᾱt−1

(
xt −

√
1− ᾱtϵ

(t)
θ√

ᾱt

)
︸ ︷︷ ︸

Predicted x0

+
√
1− ᾱt−1 − σ2

t ϵ
(t)
θ︸ ︷︷ ︸

Direction pointing to xt

+ σtz︸︷︷︸
Random noise

. (6)

Different choices of σt result in different generative processes. When σt =√
(1− ᾱt−1)(1− ᾱt)βt, the generative process becomes a DDPM. In contrast, if

σt = 0 for all t, the sampling process becomes deterministic, since no random
noise is added. When training the model to predict the clean image x0 rather

than the noise ϵt, ϵ
(t)
θ in Equations 5 and 6 can be derived from Equation 3.

Diffusion models for denoising: In traditional diffusion models, the gener-
ative process originates from a random sample derived from a Gaussian noise
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xT xt x0xt-1… …

Fig. 1. Conditional sampling strategy for denoising applications. Instead of starting
from the random noise xT , the modified reverse process starts from the noisy observa-
tion at the corresponding state xt to generate the clean image x0.

distribution, progressively removing noise to synthesize new images. This pro-
cess can be guided with a conditional image. However, in the context of image
denoising, it was demonstrated that initiating the reverse process directly from
the noisy image yields beneficial results [20]. In the forward process of diffusion
models, samples are corrupted with Gaussian noise. The noise in complex-valued
MRI can be modeled as a Gaussian noise distribution [1]. Exploiting this char-
acteristic, we can match the image with the corresponding state in the diffusion
process, determined via the estimated noise standard deviation, and initiate the
reverse process directly from that state, as illustrated in Figure 1.

3 Experiments

Diverse techniques for training and sampling processes in diffusion models have
been reported in existing literature. To strengthen the fundament of our claims,
we trained diffusion models with various configurations. Subsequently, we evalu-
ated all models with different sampling schemes, including stochastic, determin-
istic, and regularized sampling.

Data: To facilitate the sampling of random states during diffusion model train-
ing, access to clean images is essential. However, obtaining completely noise-free
MRI data in real-world scenarios is infeasible. Thus, we employed two datasets:

1. Simulated BrainWeb20 MRI database [3] with 20 anatomical brain models.
These were divided into twelve models for training and four each for vali-
dation and testing, resulting in 720 image slices for training and 240 image
slices each for validation and testing.

2. Real MRI dataset with 23 T2-weighted head scans (MAGNETOM Free.Max,
Siemens Healthineers AG, Forchheim, Germany) acquired from healthy vol-
unteers in accordance with all relevant guidelines. This dataset was split
into training (19 scans) and validation/test sets (two scans each). To obtain
noise-free images, we denoised the dataset using a U-Net architecture [22],
trained in a self-supervised manner with SURE [21].
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Table 1. The different training configurations. The first column, labeled as DTS,
indicates whether the diffusion training scheme was applied, employing a defined noise
schedule β and positional encoding.

ID DTS Prediction x attenuation β schedule

1 ✓ Signal ✓ warm-up (5e-5,1e-2,1000)
2 ✓ Noise ✓ warm-up (5e-5,1e-2,1000)
3 ✓ Signal × warm-up (5e-5,1e-2,1000)
4 ✓ Noise × warm-up (5e-5,1e-2,1000)
5 ✓ Noise × constant (1e-4,500)
6 ✓ Noise × constant (1e-4,200)
7 ✓ Signal × constant (1e-4,500)
8 ✓ Signal × constant (1e-4,200)
9 ✓ Signal × linear (1e-5,1e-3,500)
10 ✓ Noise × linear (1e-5,1e-3,500)
11 × Signal × U [0.05,0.1]

Training configurations: Table 1 provides an overview of the different train-
ing configurations. While some works propose to train the network to predict the
noise-free image x0 [20], others claim that directly predicting the noise leads to
more stable results [9]. Usually, in the forward diffusion process the signal xt is
attenuated with

√
ᾱt, such that xT comprises pure Gaussian noise. However, in

denoising scenarios, the reverse process directly commences with a noisy image
instead of a random noise sample. Thus, as suggested by Pearl et al. [20], the
signal attenuation can be omitted. Importantly, the equations for the reverse
sampling schemes have to be adapted accordingly. Furthermore, various func-
tions have been proposed for noise schedule β1,...,T , including linear and constant
schedules [6]. Given the rather small noise levels in most MRI applications, Xiang
et al. [29] employed a (reverse) warm-up strategy, such that βt remains constant
for the first 300 states. To comprehensively assess diffusion model performance
in image denoising, we combined the proposed techniques into diverse training
configurations. For comparison, we further trained the diffusion model architec-
ture without the positional encoding on images corrupted with a noise level σ
randomly sampled in a fixed interval [0.05, 0.1].

Sampling schemes: During inference, we employed both the standard stochas-
tic DDPM sampling scheme as well as the deterministic DDIM sampling scheme
(described in Section 2) for all trained models. To mitigate potential alterations
in image content introduced by the sampling process, Chung et al. [7] proposed
a low frequency regularization scheme, incorporating a low-pass filtered version
of the initial noisy image to keep the low frequency components intact. However,
this approach yields attenuated high frequency components defining edges and
small structures. Following Yang et al. [30], we regularize the reverse process by
including the initial noisy image xT in all sampling steps. Further, we report
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results for the initial model prediction for x0 after the first sampling iteration
during inference.

Experimental Setup: We trained all networks using PyTorch and the Adam
optimizer with default parameters, learning rate 5 · 10−5, and minibatch size of
8 until the validation loss reached convergence. The training was conducted on
an NVIDIA A100 GPU. We utilized the diffusion model network architecture
provided by Xiang et al. [29], available on GitHub [28].

Evaluation: We designed our experiments to analyze the influence of the gener-
ative sampling process on original image content. Thus, we calculated structural
similarity index measure (SSIM) and peak signal-to-noise-ratio (PSNR) w.r.t.
to the noise-free target after each iteration. We evaluated the networks trained
on simulated BrainWeb data with test images corrupted by two different noise
scenarios: 1) σ ∈ [0.05, 0.1], which was used to train the non-diffusion models,
and 2) σ = 0.2. In contrast, the networks trained with real MRI data were tested
using the average noise level of each original image.

4 Results and Discussion

Quantitative results for different training configurations and sampling schemes
are presented in Table 2 (simulated data) and Table 3 (real data). Despite em-
ploying various sampling schemes for the reverse process, none resulted in im-
provements in PSNR or SSIM for any training configuration compared to the
result image derived from the model prediction after the first iteration. In fact,
the results even deteriorated. While this effect has never been shown systemat-
ically before, it is in line with recent findings [16, 30]. The decline in denoising
quality over the course of the reverse process is visually depicted in Figure 2. Par-
ticularly, stochastic sampling leads to degraded results by introducing random
noise during the sampling process. Although regularizing the sampling process
with the initial noisy image flattens the curve, it still does not outperform the
denoised image after the first iteration.

In Figure 3, the detrimental effects of the stochastic sampling strategy be-
comes apparent. After the initial iteration, the model produces an image with
details closely resembling the ground truth. However, in the subsequent reverse
stochastic sampling process, the image content is altered, posing potential critical
implications for diagnosis. By design, diffusion models excel in generating real-
istic images that align closely with the distribution of training data. In contrast,
medical image denoising demands high perceptual quality, with the unyielding
requirement of preserving data fidelity. The stochastic sampling contributes to
the generation of realistic details, which is advantageous for image synthesis.
However, this same stochasticity potentially creates inconsistencies, deviating
the generated images from the true acquired information or introducing details
that are missing in the measured data. Even the more intuitive, deterministic
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Table 2. PSNR and SSIM results (PSNR / SSIM) for different training configura-
tions using the simulated data evaluated on different noise levels. None of the utilized
sampling schemes, including deterministic (det), stochastic (stoch), and respective com-
binations with regularization (reg), demonstrated an improvement across any of the
training configurations when compared to the model prediction after the first iteration.
Noisy refers to the metrics calculated between noisy input images and ground truth.

ID 1 iteration Det Stoch Det + Reg Stoch + Reg

σ
∈
[0
.0
5
,0
.1
]

Noisy 28.8 / 0.633

1 40.7 / 0.990 38.4 / 0.985 36.3 / 0.978 39.3 / 0.987 39.9 / 0.988
2 40.7 / 0.990 39.0 / 0.987 36.6 / 0.980 39.8 / 0.989 40.2 / 0.989
3 40.4 / 0.990 37.6 / 0.985 35.0 / 0.975 39.1 / 0.988 38.9 / 0.988
4 40.3 / 0.989 39.1 / 0.986 36.9 / 0.978 39.7 / 0.987 39.6 / 0.987
5 41.3 / 0.991 40.0 / 0.989 37.7 / 0.983 40.6 / 0.990 40.4 / 0.990
6 42.0 / 0.993 41.1 / 0.992 38.6 / 0.987 41.6 / 0.992 41.5 / 0.992
7 41.7 / 0.992 39.8 / 0.989 37.5 / 0.984 40.9 / 0.991 40.8 / 0.991
8 42.4 / 0.993 41.4 / 0.992 39.0 / 0.988 42.0 / 0.993 41.9 / 0.993
9 41.1 / 0.991 38.3 / 0.986 36.0 / 0.979 40.2 / 0.989 40.2 / 0.989
10 40.7 / 0.990 39.1 / 0.986 36.7 / 0.979 40.4 / 0.989 40.4 / 0.989
11 42.5 / 0.993

σ
=

0
.2 Noisy 20.0 / 0.343

9 35.3 / 0.973 34.2 / 0.970 31.9 /0.956 35.1 / 0.973 35.0 / 0.972
11 32.0 / 0.904

Table 3. PSNR and SSIM (PSNR / SSIM) for diffusion models trained with (ID=2)
and without (ID=11) the standard training scheme for real MRI data, evaluated on
the actual noise level of each image.

ID 1 iteration Det Stoch Det + Reg Stoch + Reg

Noisy 31.5 / 0.723

2 40.4 / 0.981 39.5 / 0.980 37.4 /0.973 40.0 / 0.981 39.9 / 0.981
11 41.4 / 0.983

sampling strategy demonstrates a decreasing quality in denoised images as the
sampling process progresses. The reverse sampling process not only compromises
the quality of the denoised prediction but also entails a considerable increase in
inference time, as the network has to be applied at each iteration.

The diffusion model that was limited to a specific range of noise levels dur-
ing training (ID=11) demonstrates superior performance compared to diffusion
models trained using the standard scheme, when assessed within that specific
noise level range. This advantage stems from the model’s specialization in han-
dling the noise level encountered during training. In contrast, when applied to a
higher noise level, the diffusion model trained with the standard scheme, exposed
to a wider range of noise levels during training, exhibits better performance.
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Fig. 2. The evaluation metrics were computed for the denoised network prediction at
every step of the reverse diffusion process for training configuration ID = 9, noise level
σ = 0.7, averaged over a randomly selected subset of 50 test images of the BrainWeb
data set.

Fig. 3. Exemplary result image demonstrating the negative impact of the stochastic
sampling scheme. Although the initial model prediction adeptly captures fine image
details, the final prediction reveals an alteration in image content.

Despite the ideal conditions in our experiments, marked by access to noise-
free images and precise noise level regulation, our analysis demonstrated the in-
herent challenges of applying diffusion models to medical image denoising. This
highlights a critical concern, as the method’s performance may be further com-
promised in real-world applications. In practical scenarios, accurately estimating
the noise level is a crucial factor in determining the matching state. The spatially
variant nature of noise in MRI, especially in parallel imaging contexts, adds an
extra layer of complexity. This implies that the method’s limitations could be
magnified, casting further doubt on its viability for real-world applications.

Although our dataset was limited due to the necessity of using noise-free data,
this constraint mirrors the typical conditions in real-world medical applications.
Future work will focus on expanding the analysis to include more extensive
datasets, leveraging advanced training schemes and pre-trained models to further
validate our results.
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5 Conclusion

Our investigation revealed certain advantages in the training scheme of diffusion
models, contributing to enhanced model robustness. However, we demonstrated
that the reverse process, employing existing sampling techniques, results in a
degradation in denoising quality and image fidelity with each step. The presented
findings raise questions regarding the practicality of applying diffusion models
for medical image denoising, where data fidelity is of utmost importance.

Disclosure of Interests. L.P. receives PhD funding from Siemens Healthineers AG.

F.W. and T.W. are employees of Siemens Healthineers AG. All other authors have no

competing interests to declare that are relevant to the content of this article.

References

1. Aja-Fernández, S., Vegas-Sánchez-Ferrero, G., Tristán-Vega, A.: Noise estimation
in parallel MRI: GRAPPA and SENSE. Journal of Magnetic Resonance Imaging
32(3), 281–290 (2014)

2. Anand, C., Sahambi, J.: MRI denoising using bilateral filter in redundant wavelet
domain. In: TENCON 2008-2008 IEEE Region 10 Conference. pp. 1–6. IEEE
(2008)

3. Aubert-Broche, B., Griffin, M., Pike, G., Evans, A., Collins, D.: Twenty new digital
brain phantoms for creation of validation image data bases. IEEE Transactions on
Medical Imaging 25, 1410–1416 (2006)

4. Batson, J., Royer, L.: Noise2self: Blind denoising by self-supervision. In: Interna-
tional Conference on Machine Learning. pp. 524–533. PMLR (2019)

5. Beister, M., Kolditz, D., Kalender, W.A.: Iterative reconstruction methods in X-ray
CT. Physica medica 28(2), 94–108 (2012)

6. Chen, T.: On the importance of noise scheduling for diffusion models. arXiv
preprint arXiv:2301.10972 (2023)

7. Chung, H., Lee, E.S., Ye, J.C.: MR image denoising and super-resolution using
regularized reverse diffusion. IEEE Transactions on Medical Imaging 42(4), 922–
934 (2022)

8. Chung, H., Ye, J.C.: Score-based diffusion models for accelerated MRI. Medical
image analysis 80, 102479 (2022)

9. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in
neural information processing systems 33, 6840–6851 (2020)

10. Kannengiesser, S., Mailhe, B., Nadar, M., Huber, S., Kiefer, B.: Universal itera-
tive denoising of complex-valued volumetric MR image data using supplementary
information. ISMRM (2016)

11. Kaur, A., Dong, G.: A complete review on image denoising techniques for medical
images. Neural Processing Letters pp. 1–44 (2023)

12. Kelm, Z.S., Blezek, D., Bartholmai, B., Erickson, B.J.: Optimizing non-local means
for denoising low dose CT. In: 2009 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro. pp. 662–665. IEEE (2009)

13. Koonjoo, N., Zhu, B., Bagnall, G.C., Bhutto, D., Rosen, M.: Boosting the signal-to-
noise of low-field MRI with deep learning image reconstruction. Scientific Reports
11(1), 8248 (2021)



10 Pfaff et al.

14. Krull, A., Buchholz, T., Jug, F.: Noise2Void-learning denoising from single noisy
images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 2129–2137 (2019)

15. Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., Aila,
T.: Noise2noise: Learning image restoration without clean data. arXiv preprint
arXiv:1803.04189 (2018)

16. Li, T., Feng, H., Wang, L., Xiong, Z., Huang, H.: Stimulating the diffusion
model for image denoising via adaptive embedding and ensembling. arXiv preprint
arXiv:2307.03992 (2023)

17. Lustig, M., Donoho, D., Pauly, J.: Sparse MRI: The application of compressed
sensing for rapid MR imaging. Magnetic Resonance in Medicine 58(6), 1182–1195
(2007)

18. Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., Garćıa-Mart́ı, G., Mart́ı-Bonmat́ı,
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