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Abstract. Effective confidence estimation is desired for image classifi-
cation tasks like clinical diagnosis based on medical imaging. However, it
is well known that modern neural networks often show over-confidence
in their predictions. Deep Ensemble (DE) is one of the state-of-the-art
methods to estimate reliable confidence. In this work, we observed that
DE sometimes harms the confidence estimation due to relatively lower
confidence output for correctly classified samples. Motivated by the ob-
servation that a doctor often refers to other doctors’ opinions to ad-
just the confidence for his or her own decision, we propose a simple
but effective post-hoc confidence estimation method called Deep Model
Reference (DMR). Specifically, DMR employs one individual model to
make decision while a group of individual models to help estimate the
confidence for its decision. Rigorous proof and extensive empirical eval-
uations show that DMR achieves superior performance in confidence es-
timation compared to DE and other state-of-the-art methods, making
trustworthy image classification more practical. Source code is available
at https://openi.pcl.ac.cn/OpenMedIA/MICCAI2024_DMR

Keywords: Uncertainty Estimation · Misclassification Detection · Deep
Ensembles.

1 Introduction

In recent years, more and more deep neural networks (DNN) have been lever-
aged to help with clinical diagnosis [29,26,31].While these models often perform
comparably well or even better than specialist doctors and therefore can be used
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Fig. 1: Distributions of estimated confidences for correctly classified and mis-
classified samples on the MiniImageNet test set. Left: An individual model as-
signs higher confidence to most samples, including some misclassified samples.
Middle: DE reduces the confidence of some correctly classified samples while
assigning lower confidence to misclassified samples. Right: the proposed DMR
assigns lower confidence to more misclassified samples and keep moderate higher
confidence for correctly classified samples. Model backbone is WRN40-2.

as auxiliary tools to help improve the diagnosis performance of at least junior
doctors, unlike human beings, DNN models often give predictions with over-
confidence even when some predictions are incorrect [9]. Since over-confident but
incorrect predictions could cause serious consequence for patients, it would be de-
sired to appropriately estimate the confidence of model predictions and produce
trustworthy predictions in such risk-sensitive medical scenarios. More reliable
confidence estimates for model predictions would largely reduce the workload of
human doctors, which can help doctors mainly focus on the clinical cases with
lower prediction confidence from the model. Such challenging task of reliably
estimating prediction confidence is also called misclassification detection [12,28]
or selective classification [8] in computer vision.

To solve this challenging task, various methods have been proposed to opti-
mize an individual model to achieve lower confidence for ambiguous samples, e.g.,
by data augmentation [33] or finding flat minima [32]. While slightly improving
the performance in misclassification detection, these methods are not compara-
ble to the Deep Ensemble (DE) [16] method and its variants which ensemble
multiple models and have shown state-of-the-art performance in accuracy, confi-
dence estimation, and model calibration [7,24]. However in practice, we observe
that DE’s performance in misclassification detection is still limited, probably
because directly averaging the predictions of all individual models in DE often
produces relatively lower confidence even for some correct predictions [20] (also
see Figure 1, middle).

In this study, motivated by the clinical scenario where a doctor often refers
to other doctors’ opinions to adjust his or her confidence for a specific diagnosis
result, we propose a simple yet effective method called Deep Model Reference
(DMR) to more accurately estimate confidences for model predictions. Exten-
sive experiments on two medical image datasets and three natural image datasets
with different network architectures demonstrate that DMR consistently outper-
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forms state-of-the-art methods in misclassification detection. The contributions
of this study are summarized below.

– A simple yet effective post-hoc method called DMR is proposed for misclas-
sification detection.

– Rigorous and detailed proof is provided to verify why the proposed method
is better than the state-of-the-art DE method.

– Extensive empirical evaluations confirm the superior performance of the pro-
posed method in misclassification detection.

2 Related Work

In the realm of misclassification detection, the maximum softmax probability,
as initially introduced by Hendrycks et al. [12], serves as a widely acknowl-
edged baseline. Nonetheless, it’s recognized that DNN models tend to exhibit
overconfidence in their predictions, particularly for erroneous samples. To mit-
igate this challenge, Corbière et al. [3] introduced an extra network to learn
the ground-truth category’s softmax probability, which is a proper confidence
estimate for misclassified samples and equivalent to maximum softmax proba-
bility for correctly classified samples. Unfortunately, modern DNN models are
prone to fitting all training samples, thus leading to the estimated confidence
being approximately equal to the maximum softmax probability. To address this
issue, Moon et al. [19] proposed the CRL method, which introduces a regular-
ized loss function based on the ordinal ranking of historical correctness rates.
Furthermore, Zhu et al. [32] introduced FMFP, which aims to find a flat min-
imum in the DNN models’ solution space. Recent studies [34,33] have further
expanded the field by incorporating data augmentation and auxiliary outliers
to refine models’ confidence estimates for ambiguous samples. Although these
approaches have shown effectiveness in enhancing model reliability, they often
necessitate model retraining, modifications to the network architecture, or the
inclusion of additional data. These requirements introduce extra complexity that
may limit their practical applicability.

In the field of uncertainty and confidence estimation, DE [16] still yields the
best performance. Some previous works [17,18,23] are proposed to train a single
model to approximately reach but cannot outperform the effectiveness of DE.
To understand why DE works so well, recent works [5,21] found that, if prop-
erly training diverse member models, DE can more reliably estimate confidence
on ambiguous samples. In this paper, we draw inspiration from DE’s utilization
of model diversity to improve predictions on ambiguous samples, and propose
DMR that not only leverages this principle but also significantly exceeds DE’s
performance. This advancement underscores the potential of integrating model
diversity with innovative techniques to achieve superior uncertainty and confi-
dence estimations. Additionally, DMR does not require any additional retraining
or data, suggesting its potential for applications in the real world.
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3 Method

This study aims to solve the misclassification detection task by designing an ap-
propriate classifier model and a confidence scoring function, such that incorrect
predictions of test data by the classifier are associated with lower confidence
scores, while correct predictions associated with higher confidence scores.

3.1 Deep Model Reference

The proposed method can be considered as a special modification of the Deep
Ensemble (DE) method [16]. Suppose an ensemble model consists of M individ-
ual classifiers, and for any test data x, let pm = [pm,1 pm,2 . . . pm,K ]⊺ ∈ RK

denote the output probability vector from the m-th individual classifier. In the
DE method, the Maximum Softmax Probability (MSP) of the ensemble model
is often used as the confidence scoring function Se(x) to estimate the confidence
of model prediction, i.e.,

Se(x) = max
k∈{1,2,...,K}

1

M

M∑
m=1

pm,k . (1)

Motivated by the diagnosis scenario where a doctor often refers to other
doctors’ opinions to adjust his or her confidence for the diagnosis result, we
propose a method called Deep Model Reference (DMR). Specifically, in a group
of trained individual classifiers, any individual classifier can be selected as the
main model (‘the doctor’) for class prediction, and all the other individual clas-
sifiers are considered as reference models (‘other doctors’) to help estimate the
prediction confidence for the main model. Formally, suppose the i-th individ-
ual model is selected as the main model, and denote the predicted category by
k∗ = argmaxk∈{1,2,...,K} pi,k for test data x. Then, the prediction confidence of
the main model is estimated by referring to the prediction confidences of the
reference models for the predicted category k∗ as below,

Sr(x) =
1

M

M∑
m=1

pm,k∗ . (2)

With this new confidence scoring function, incorrect predictions by the main
model would be more likely result in a lower confidence estimates. For a hard test
sample which is often misclassified by the main (individual) model, the reference
models together with the main model would likely give diverse softmax probabil-
ity distributions and predictions due to existing visual ambiguities in hard data.
Such non-consensus in outputs from multiple models would often naturally lead
to a lower confidence estimate with the scoring function Sr(x) (Equation 2). In
comparison, while the scoring function Se(x) (Equation 1) from the DE method
would also likely give lower confidence estimates for hard test samples, the class
predictions from the ensemble model would be more likely correct compared to
that from an individual model [4,2], resulting in “correct predictions but with
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lower confidence” and therefore making it difficult to differentiate incorrect pre-
dictions from correct ones based on confidence scores. Figure 1 demonstrates an
example of confidence estimates on a set of test samples respectively from the
maximum softmax probability (MSP) of an individual model (left), the DE con-
fidence scoring function Se(x) (middle), and the proposed DMR scoring function
Sr(x) (right). The distributions of estimated confidence scores between correctly
and incorrectly classified samples are more separated by DMR than by the other
two methods. In other words, the proposed DMR provides a better confidence
scoring function for misclassification detection.

3.2 Theoretical Analysis

In this study, we also theoretically prove that the proposed DMR performs
comparably well or better than DE for misclassification detection. Formally,
let Ae(D) and Ar(D) respectively denote the classification accuracy on a test
set D from an ensemble of individual models and a randomly selected individual
model. The proof is built on the following assumption,

Assumption 1. Ae(D) ≥ Ar(D) holds when all individual models are trained
sufficiently with different random initializations or neural network architectures.

This assumption is valid in general, as confirmed in plenty of prior studies
and applications [2,4]. Hence, the following proposition is proved to be true,

Proposition 1. The performance of DMR in misclassification detection is equal
to or better than DE when Assumption 1 holds.

To prove this proposition, the following lemma is also utilized.

Lemma 1. The performance of a misclassification detection classifier increases
when the expectation Ex(d(x)) decreases, where

d(x) =

{
S(x), if x is misclassified
1− S(x), if x is not misclassified

(3)

Here, S(x) represents the confidence scoring function associated with either
the ensemble model or an individual model. Better scoring function would lead
to smaller d(x) and therefore smaller expectation Ex(d(x)). We prove that, un-
der all different conditions, the expectation Ex(d(x)) based on the proposed
DMR scoring function (Equation 2) is smaller than or equivalent to that based
on the DE-based scoring function (Equation 1). Detailed proof is provided in
Supplementary Material.

4 Experiments

4.1 Experimental Setup

Datasets and network architectures: The proposed DMR method was eval-
uated on two medical and three natural image datasets with several different neu-
ral network architectures. Medical datasets include BUSI [1] and Covid-CT [25].
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BUSI is a breast ultrasound dataset that contains three classes (normal, benign,
and malignant) and totally 780 images, on which ResNet18 and ResNet101 [10]
were adopted as the backbone model with a stratified 5-fold split. The Covid-
CT dataset includes 349 and 463 CT images from Covid-19 and non-Covid-19
patients respectively, on which DenseNet169 [14] and ViT-B16 [6] were trained
with the provided train-test split. The natural image datasets include CIFAR-10
[15], CIFAR-100 [15], and MiniImageNet [22] with the standard train-test split.
WRN40-2 [27] and ResNet34 were chosen as the model backbones. Note that
various backbones are adopted to support the generalizability of the proposed
DMR method.
Implementation details: For each experiment, three (i.e., M = 3) individual
models were trained by the stochastic gradient descent (SGD) optimizer with a
momentum of 0.9 and weight decay of 5e-4. On CIFAR, each model was trained
for 200 epochs with batch size 128 and an initial learning rate of 0.1, which
was decayed by a factor of 10 at the 80-th and the 140-th epoch. On BUSI and
MiniImageNet, each model was trained for 100 epochs with batch size 128 and
an initial learning rate of 0.1 which was decayed by a factor of 10 at the 40-th
and the 80-th epoch. On Covid-CT, DensNet169 and ViT-B16 pre-trained on
ImageNet-1K were fine-tuned for 100 epochs with batch size 100 and an initial
learning rate of 0.01 which was decayed by a factor of 10 at the 40-th and the
80-th epoch.
Evaluation metrics: Following previous studies [19,33], classification perfor-
mance is measured by accuracy (ACC), and misclassification detection perfor-
mance is measured by the area under ROC curve (AUROC), the area under the
precision-recall curve (AUPR), and the false positive rate of misclassified sam-
ples when the true positive rate of correctly classified samples is 95% (FPR95).
Better misclassification detection performance is associated with higher AUROC
and AUPR and with lower FPR95. For each experiment, the mean and standard
deviation of each metric over five runs were reported.

4.2 Results and Analysis

Natural image datasets: Following previous studies, we first compare our
method to traditional methods (MSP [12], CRL [19]), state-of-the-art methods
(FMFP [32], OpenMix [33]) and especially DE [16] on natural image datasets.
For OpenMix, we use 300K RandImages [13] and Place365 [30] as the outlier
dataset for CIFAR and MiniImageNet, respectively. For misclassification detec-
tion performance, DE and its variant FMFP outperform other methods that use
a single model in most of the settings. This shows that DE with diverse member
models yields better confidence estimation. We also observe that some methods,
e.g. CRL, perform better than MSP on AUROC and AUPR but are inferior on
FPR95. This is because AUROC and AUPR measure the overall performance,
but FPR95 measures the sensitivity to anomalous confidence (e.g., 0.999 for
misclassified samples). Not surprisingly, our proposed DMR consistently out-
performs DE-based methods in almost all settings. For example, for the model
trained with WRN40-2 backbone on MiniImageNet, DMR reduces FPR95 from
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50.93% to 32.62% compared to DE, which is a large margin. On the other hand,
for classification performance, as shown in Table 1 (1st column), DE outperforms
all other methods. While the ACC of our proposed DMR method is inferior to
DE as expected, it’s comparable to other methods.

Table 1: Classification and misclassification detection performance comparison
on natural images datasets. The reported results are mean and standard devia-
tion over 5 runs for each metric (%). Bold values are the best results.
Dataset Method WRN40-2 ResNet34

ACC ↑ AUROC ↑ AUPR ↑ FPR95 ↓ ACC ↑ AUROC ↑ AUPR ↑ FPR95 ↓

CIFAR-10

MSP [12] 94.64±0.12 91.18±0.64 44.46±1.13 37.09±2.22 95.30±0.08 90.94±0.39 42.46±2.08 34.74±0.96

CRL [19] 94.33±0.11 93.62±0.22 44.65±1.83 38.56±1.46 94.69±0.07 94.01±0.23 45.78±1.36 36.61±2.51

FMFP [32] 95.09±0.05 94.97±0.16 46.68±1.33 32.00±1.95 95.98±0.05 95.17±0.12 42.67±1.24 30.26±2.82

OpenMix [33] 93.56±0.12 92.89±0.25 44.76±1.93 42.75±2.11 94.66±0.09 93.47±0.36 45.00±1.66 38.31±2.14

DE [16] 95.55±0.05 94.23±0.26 45.80±1.82 32.54±1.75 96.02±0.08 93.58±0.07 41.81±1.33 30.72±2.08

DMR (ours) 94.64±0.12 95.59±0.28 63.61±1.88 22.50±1.19 95.29±0.08 94.92±0.20 59.99±1.53 23.00±0.87

CIFAR-100

MSP [12] 75.25±0.14 85.71±0.37 65.00±1.36 62.42±2.11 78.94±0.23 87.43±0.43 63.51±1.15 59.95±1.82

CRL [19] 75.94±0.25 87.42±0.41 66.15±1.42 60.42±2.53 79.00±0.28 88.24±0.25 63.80±0.61 59.63±1.17

FMFP [32] 77.79±0.12 87.93±0.21 64.38±0.77 61.58±1.36 80.44±0.16 88.77±0.19 62.02±0.89 60.63±2.08

OpenMix [33] 73.81±0.28 85.95±0.41 65.13±1.32 64.63±1.41 76.79±0.22 87.14±0.09 64.58±0.41 61.48±0.56

DE [16] 79.23±0.22 87.95±0.40 64.41±0.95 57.92±1.54 81.49±0.12 88.15±0.16 61.17±0.83 58.70±0.53

DMR (ours) 75.25±0.14 91.45±0.11 78.90±0.75 40.44±0.84 78.94±0.24 90.84±0.18 73.92±0.75 44.45±1.26

MiniImageNet

MSP [12] 80.76±0.26 89.16±0.19 63.68±0.72 55.81±1.09 84.84±0.23 90.18±0.17 60.89±0.59 51.09±1.49

CRL [19] 82.53±0.30 90.14±0.23 62.61±1.17 55.25±1.33 85.92±0.18 91.31±0.10 60.23±0.73 50.57±1.39

FMFP [32] 83.18±0.30 90.58±0.47 62.93±2.03 53.38±2.39 85.58±0.46 90.37±0.32 60.99±0.56 51.59±1.68

OpenMix [33] 81.31±0.11 89.73±0.23 63.63±0.96 55.50±1.77 85.31±0.17 91.12±0.25 61.60±0.69 49.51±0.92

DE [16] 84.44±0.09 90.73±0.19 63.16±0.68 50.93±1.19 86.73±0.12 91.28±0.09 60.28±0.91 47.88±1.68

DMR (ours) 80.76±0.25 93.68±0.14 78.94±0.98 32.62±1.43 84.84±0.23 93.17±0.23 72.65±0.7 35.17±1.60

Medical image datasets: To showcase the generalizability of our proposed
method further, we evaluate the misclassification detection performance on two
medical datasets across four different network architectures. Table 2 and Fig. 2 il-
lustrate the performance comparison for both convolutional neural network(CNN)
and Vision Transformer(ViT) on BUSI and Covid-CT datasets, both of which
are small datasets with no more than 1000 samples. For misclassification detec-
tion performance, it can be observed that some methods perform better only in
one setting (small or large models, CT or ultrasound dataset), suggesting prob-
ably a lack of stability with different network architectures and image formats
on such small datasets. However, while achieving similar classification accuracy
to other methods except DE, DMR exhibits the best misclassification detec-
tion performance across two types of network architectures and image formats
robustly, which further demonstrates the practicality and adaptability when ap-
plying DMR to real-world applications with limited data.
Experiments under distribution shift: In real-world applications, the im-
age distribution may vary across training and test data (e.g., medical images
collected by different hospitals). To evaluate the generalizability and robustness
of our proposed method, we test our models on CIFAR-10-C [11], a common
corruption dataset. Figure 3 shows that, compared to DE, DMR boosts the mis-
classification performance consistently across different corruptions (p=0.012),
which further shows the practicability of DMR in real-world applications.
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Fig. 2: Misclassification detection performance comparison on Covid-CT dataset.
DMR outperforms all other methods across two model architectures.

Table 2: Classification and misclassification detection performance comparison
on BUSI dataset.
Method ResNet18 ResNet101

ACC ↑ AUROC ↑ AUPR ↑ FPR95 ↓ ACC ↑ AUROC ↑ AUPR ↑ FPR95 ↓
MSP [12] 85.33±1.63 79.90±4.45 45.44±3.74 68.24±5.30 84.85±1.83 78.12±1.73 42.05±3.13 74.59±4.58

CRL [19] 85.71±2.11 79.97±4.12 43.06±5.77 70.26±8.17 84.34±1.83 79.84±2.56 46.44±4.95 69.02±8.79

FMFP [32] 86.23±1.64 81.20±2.74 45.10±2.48 67.25±6.38 85.82±1.13 79.01±3.76 42.99±4.37 71.77±6.92

DE [16] 87.23±1.87 79.08±5.49 40.16±6.25 73.74±4.14 86.31±1.98 77.48±2.66 39.64±4.01 74.69±3.91

DMR (ours) 85.33±1.63 82.88±4.12 54.46±3.40 59.05±4.46 84.85±1.83 80.48±2.34 50.27±3.01 65.22±3.54
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Fig. 3: Misclassification performance on CIFAR-10-C under 17 types of corrup-
tions for all five severity levels. Models were trained with ResNet34 on CIFAR-10.
DMR achieves superior performance consistently across all corruptions.

Effect of number of individual models: We further evaluate how the number
of models M affects the performance of DE and DMR. As Figure 4 illustrates,
the performance of DE is improved when M increases but the improvement
becomes limited when M > 5. In comparison, DMR can still achieve moderate
improvement, which suggests that the proposed DMR may be further improved
with more individual models.

5 Conclusion

In this paper, we propose a simple yet effective method DMR for misclassification
detection. The theoretical proof is provided to justify why DMR can be equiva-
lent to or outperform DE in misclassification detection. Extensive and empirical
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Fig. 4: Effect of number of individual models. DMR achieves further improvement
when model number increases. Model is WRN40-2 trained on CIFAR-10.

evaluations show that DMR achieves state-of-the-art performance compared to
DE and other methods across different types of neural network architectures
and datasets, even when under distribution shift. Although DMR requires the
extra computational cost of DE and slightly sacrifices accuracy, we believe that
confidence estimation is more important than accuracy in some real-world ap-
plications like clinical diagnosis, which emphasizes the values of this work.
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