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Abstract. Skin lesion segmentation is vital in computer-aided diagnosis
and treatment of skin diseases. UNet and its variants have been widely
utilized for skin lesion segmentation. However, resource constraints limit
the deployment of larger parameter models on edge devices. To address
this issue, we propose a novel lightweight boundary-assisted UNet (LB-
UNet) for skin lesion segmentation. LB-UNet incorporates the Group
Shuffle Attention module (GSA) to significantly reduce the model’s pa-
rameters and computational demands. Furthermore, to enhance the model’s
segmentation capability, especially in handling ambiguous boundary, LB-
UNet introduces the Prediction Map Auxiliary module (PMA). Briefly,
PMA consists of three modules: (1) Segmentation Region and Bound-
ary Prediction module is utilized to predict the segmentation region and
boundary of the decoder features; (2) GA-Based Boundary Generator
is employed to generate the ground truth boundary map through ge-
netic algorithm; (3) Prediction Information Fusion module enhances the
skip connection by leveraging the prediction information. By combin-
ing this modules, the region and boundary information is effectively in-
tegrated into the backbone. The experiment results on the ISIC2017
and ISIC2018 datasets demonstrate that LB-UNet outperforms current
lightweight methods. To the best of our knowledge, LB-UNet the first
model with a parameters count limited to 38KB and Giga-Operations
Per Second (GFLOPs) limited to 0.1. The codes and trained models are
publicly available at https://github.com/xuxuxuxuxuxjh/LB-UNet.
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1 Introduction

In the past decades, skin cancer and its associated expenses have become a
major public health issue [18]. According to recent data, melanomas represent
approximately 1% of skin cancer cases but are responsible for the majority of
skin cancer-related deaths [16]. The biggest challenge in skin cancer diagnosis
is the lack of specialized doctors. To address this issue, an effective solution is

https://github.com/xuxuxuxuxuxjh/LB-UNet
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Fig. 1: (a) and (b) respectively show the visualization of comparison results on
the ISIC2017 and ISIC2018 dataset. X-axis represents parameter count, Y-axis
represents mIoU, and the color depth indicates GFLOPs.

the use of artificial intelligence (AI) for medicine. Deploying lightweight mod-
els on smartphones can enable real-time diagnosis like the DermAssist [13] and
Skinive [23] apps. Transmitting skin images to remote servers for processing is
not allowed to protect patient privacy [18]. Therefore, lightweight models are
needed, and transformer-based large models like [2,3,27] may no longer be suit-
able. Lightweight skin lesion segmentation has gained significant attention in
recent years as a crucial and challenging component of automated skin lesion
analysis workflows [18]. Valanarasu et al. [25] proposed the UNeXt model, which
utilizes tokenized MLP blocks instead of regular convolutional layers, reducing
parameters and computational complexity. MALUNet [21] and its extended ver-
sion EGE-UNet [22] introduce novel attention modules and skip connections,
showcasing powerful segmentation performance. However, there is room for im-
provement in terms of model parameters and segmentation accuracy, particularly
in addressing the ambiguity of structure boundary in skin lesion segmentation.

In this paper, we propose a novel boundary-assisted lightweight skin lesion
segmentation model called LB-UNet. It not only achieves a significant reduction
in model parameters but also demonstrates excellent performance in addressing
ambiguous boundary in skin lesion segmentation. Specifically, LB-UNet intro-
duces two key modules: Group Shuffle Attention modules (GSA) and Predictive
Map Auxiliary modules (PMA). On one hand, inspired by EGE-UNet [22] and
ShuffleNet [29], we propose GSA to reduce parameters. It divides the input into
different groups and utilizes Hadamard Product Attention within each group.
However, unlike EGE-UNet [22], we do not change the axes of attention but
utilize Group Shuffle operation to more effectively capture information. On the
other hand, we introduce PMA to enhance the model’s ability to segment am-
biguous boundary. PMA consists of three sub-modules: Segmentation Region
and Boundary Prediction module (RBP), Prediction Information Fusion mod-
ule (PIF), and GA-Based Boundary Generator (GBG). LB-UNet enhances its
learning of crucial region and boundary information by comparing the predictive
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Fig. 2: (a) The overview of LB-UNet; (b) The architecture of Group Shuffle
Attention module; (c) The architecture of Prediction Information Fusion module.

maps generated by RBP with both the ground truth and the boundary maps
generated by GBG. RBP effectively integrates deep supervision into the segmen-
tation model like [5,8] . In contrast to [5], which utilizes deconvolution to match
the label size, we create feature maps through 1×1 convolutions and resize them
to match the label size using bilinear interpolation. AD Diagnostics [8] uses deep
supervision in upper layers for fine-tuning the model, while we employ deep su-
pervision in intermediate layers to enhance boundary perception. PIF combines
predictive maps with skip connections, focusing on essential region and bound-
ary. Inspired by previous research, we improved Lee’s [11] boundary key point
selection algorithm and proposed GBG. GBG employs a genetic algorithm in-
stead of random selection to generate high-quality boundary key point in fewer
iterations. Compared to the method that BAT [28] uses, which employs circles
with a radius of 10 to calculate the lesion area, GBG is capable of adapting to
images of different sizes.

In summary, our contributions can be divided into two aspects: (1) We pro-
pose GSA and PMA, where GSA effectively reduces parameters, while PMA
enhances the model’s segmentation capability. (2) We introduce LB-UNet, a
lightweight skin lesion segmentation model that is the first model with parame-
ters count below 38KB and GFLOPs below 0.1.

2 LB-UNet

2.1 Architecture Overview:

The architecture of our proposed LB-UNet is illustrated in Fig.2(a). LB-UNet is
a UNet-based model composed of an encoder, decoder and PMA. The encoder
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and decoder consist of six stages, with channel sizes of {8, 16, 24, 32, 48, 64}.
The first three stages employ regular convolutional layers with a kernel size
of 3, while the last three stages utilize GSA, which offers reduced parameters
count and computational demands. For downsampling in the encoder, we replace
the max-pooling operation with a 2 × 2 convolutional operation. Additionally,
after the convolutional operation in the encoder of Stage 3, we incorporate the
ConvLayer, which has demonstrated excellent performance in ConvUNeXt [7].
PMA integrates well with the UNet framework, performing segmentation region
prediction in Stages 2-6 and boundary prediction in Stages 2-4. Unlike the simple
skip connections in UNet, LB-UNet adopts prediction-based skip connections
and utilizes PIF to focus on the segmentation region and boundary information.

2.2 Group Shuffle Attention module:

Due to the high parameters of the convolutional layer in deep networks, we intro-
duce the GSA to replace it, as shown in Fig. 2(b). First, we divide the input into
four groups based on channels, and each group is processed separately, effectively
reducing the parameters. Then, for each group, we employ linear complexity HPA
[22] to construct an 8× 8 shared memories [6] for information retrieval. Finally,
we apply shuffle operation to adjust the order of groups and merge them along
the channel dimension, followed by utilizing depth-wise separable convolution
[10] to fuse the information.

2.3 Predictive Map Auxiliary module:

To improve the boundary segmentation capability, we propose PMA. PMA con-
sists of three parts: RBP, PIF and GBG.
Segmentation Region and Boundary Prediction module: We propose
RBP, which utilizes two separate convolutional modules. One module is ded-
icated to predicting the segmentation region, while the other module focuses
on predicting the boundary. To preserve this prediction information, we further
employ a residual attention scheme [26]. The above process can be expressed by
formulas (1) to (2).

R̂i = δ(c1×1(F
i)) , B̂i = δ(c1×1(F

i)) (1){
Di = F i + F i × R̂i + F i × B̂i (i = 2, 3, 4)

Di = F i + F i × R̂i (i = 5, 6)
(2)

where F i ∈ Rwi×hi×ci represents the feature of i-th decoder layer, R̂i ∈ Rwi×hi×1

represents the predictive region feature, B̂i ∈ Rwi×hi×1 represents the predictive
boundary feature,Di ∈ Rwi×hi×ci represents the preserved feature, δ is a sigmoid
function, and c1×1 denotes convolution function with kernel size of 1.
Prediction Information Fusion module: In traditional UNet [20] models, the
encoder feature is directly added to the decoder feature through skip connections.
Different from previous fusion methods, we design the PIF to specifically focus
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Algorithm 1 Genetic Algorithm-Based Boundary key point selection algorithm

1: Input: number of key points n, population size NP , initialize iteration count T1,
genetic iteration count T2, crossover probability β, mutation probability γ

2: Output: boundary key point set Smax with the maximum fitness.
3: for i = 1, 2, ..., T1 do
4: P i

∗ ← randomly generate a set of n points {(x1, y1), (x2, y2), ..., (xn, yn)}
5: end for
6: Calculate fitness IOU(RGT , f(P

i
∗))

7: P0 ← select the Np individuals with the highest IOU(RGT , f(P
i
∗)).

8: for t = 1, 2, ..., T2 do
9: for i = 1, 2, ..., NP do
10: Parent1, Parent2 ← roulette wheel selection from Pt−1 based on IOU
11: if rand < β then
12: Offspring ← crossover(Parent1, Parent2)
13: else
14: Offspring ← Parent1
15: end if
16: if rand < γ then
17: Offspring ← mutation(Offspring)
18: end if
19: P i

t ← Offspring
20: end for
21: Calculate fitness IOU(RGT , f(P

i
t ))

22: if f(P i
t ) > f(Smax) then

23: Smax ← P i
t , where i = argmax

(
IOU(RGT , f(P

i
t ))

)
24: end if
25: end for
26: return Smax

on the features related to segmentation region and boundary. As shown in Fig.
2(c), the encoder feature related to segmentation region and boundary is added
to the preserved decoder feature with specific weights, providing an additional
contribution. The PIF module can be expressed as:

{
V i−1 = Di + Ei + wi

1 × Ei × R̂i + wi
2 × Ei × B̂i (i = 2, 3, 4)

V i−1 = Di + Ei + wi
1 × Ei × R̂i (i = 5, 6)

(3)

where Ei represents the feature of i-th encoder layer, the result V i−1 is fed into
(i − 1)-th decoder layer. In this paper, we set wi

1 to 0.5, 0.4, 0.3, 0.2, 0.1 for i
from 2 to 6, and wi

2 to 0.3, 0.2, 0.1 for i from 2 to 4.
GA-Based Boundary Generator: GBG is a module that generates a spe-
cialized ground truth boundary map. The ground truth boundary map con-
sists of boundary line and key point components. The boundary line compo-
nent can be obtained by conventional edge detection algorithm [1]. For the key
point component, we propose a GA-based boundary key point selection algo-
rithm. First, we utilize a previous method [11] for evaluating key point. Let
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S = {(x1, y1), (x2, y2), . . . , (xn, yn)} denotes a set of n key points. The function
f(·) is defined as connecting the points in set S sequentially to form a boundary
region. The evaluation criterion and fitness function are based on the Intersec-
tion Over Union (IOU) value between the region f(S) formed by the key points
and the ground truth region RGT . Then, we use a genetic algorithm to search
for the key point set with the maximum IOU value. We start by randomly gen-
erating T1 sets of key points to form an initial population P0 of size NP . Next,
we perform T2 iterations of genetic evolution to update the population. Finally,
the key point with the maximum IOU value among all populations is identified
as the final answer. Algorithm 1 describes the details of the proposed genetic
algorithm-based boundary key point selection algorithm.

2.4 Loss function:

In our study, we adopted the group loss from EGE-UNet [22] and added an
additional boundary loss function. This modification enables LB-UNet to not
only focus on segmentation regions but also to pay more attention to the finer
details of boundary. Our loss function can be expressed as formulas (4) to (7).

LSeg = LBCE(y, ŷ) + 2× LDICE(y, ŷ), (4)

Li
Region = 0.5× LBCE(y,BI(R̂i)) + LDICE(y,BI(R̂i)) (5)

Li
Boundary = 0.5× LBCE(GBG(y),BI(B̂i)) + LDICE(GBG(y),BI(B̂i)) (6)

LTotal = LSeg +
6∑

i=2

λi × Li
Region +

4∑
i=2

µi × Li
Boundary (7)

where LBCE and LDICE represent binary cross-entropy and dice loss, BI denotes
bilinear interpolation, GBG denotes GA-Based Boundary Generator. λi is the

weight of region feature R̂i for different stage, and µi is the weight of boundary

feature B̂i for different stage. In this paper, we set λi to 0.5, 0.4, 0.3, 0.2, 0.1 for
i from 2 to 6, and µi to 0.3, 0.2, 0.1 for i from 2 to 4.

3 Experiments

Datasets: To effectively evaluate our proposed LB-UNet model, we selected two
commonly used skin lesion segmentation datasets, ISIC2017 [12] and ISIC2018
[4,24]. ISIC2017 consists of 2150 dermoscopy images, while ISIC2018 contains
2694 dermoscopy images. Consistent with prior research [21], we randomly split
the datasets into training and testing sets at a 7:3 ratio. We normalized all the
images and resized them to a size of 256× 256. For the training set, we applied
image augmentation techniques such as horizontal flipping, vertical flipping, and
random rotation to enhance the data.
Implementation Details: LB-UNet is implemented with Pytorch [19] frame-
work. All experiments are performed on a single NVIDIA GeForce RTX 3090
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Fig. 3: Visualization of some predictions on the ISIC2018 dataset.

GPU. We utilize AdamW [15] as the optimizer with a learning rate of 0.001
and a weight decay of 0.01. For the scheduler, we select the CosineAnnealingLR
[14] with a maximum number of iterations of 50 and a minimum learning rate
of 0.00001. The batch size is set to 8, and we train LB-UNet for a total of
300 epochs. To assess our proposed method, we employ Mean Intersection over
Union(mIoU) and Dice similarity score(DSC) as evaluation metrics. In addition,
Params and GFLOPs are utilized to assess the number of parameters and the
computational complexity respectively. To generate the ground truth bound-
ary map, we selected 6 key points as described by Lee [11]. We initialized a
population of size 300 with 2000 random iterations, followed by 100 genetic
iterations(n = 6, T1 = 2000, T2 = 100, Np = 300).

Comparative results: We compared the performance of LB-UNet with the
state-of-the-art lightweight skin lesion segmentation models on the ISIC2017
and ISIC2018 datasets. The results are presented in Table 1. Please note that
our focus is on comparing the models based on segmentation performance, as
well as the number of parameters and computational complexity. In comparison
to the current state-of-the-art model EGE-UNet [22], our model not only demon-
strates superior segmentation performance but also reduces the number of model
parameters by 1.4x. Additionally, taking the results on the ISIC2018 dataset as
an example, LB-UNet achieves a 2.28% increase in mIoU and a 1.21% increase
in DSC compared to UNeXt-S [25], while reducing the model parameters by
11.9%. In Figure 3, we present the visualization of models’ segmentation results.
This figure visually demonstrates the impressive boundary detail segmentation
capabilities of LB-UNet.

Ablation results: To demonstrate the effectiveness of the proposed modules,
we conducted ablation experiments on the ISIC2018 dataset. In this paper, we
adopted a six-stage U-shaped architecture with symmetric encoder and decoder
components, referenced from MALUNet [21], as our baseline model. Each stage’s
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Table 1: Comparative experimental results on the ISIC2017 and ISIC2018.
Dataset Model Params(M)↓ GFLOPs↓ mIoU(%)↑ DSC(%)↑

UNet [20] 7.77 13.76 76.98 86.99
MobileViTv2 [17] 1.87 0.70 78.72 88.09
MobileNetv3 [9] 1.19 0.10 77.69 87.44

ISIC2017 UNeXt-S [25] 0.32 0.10 78.26 87.80
MALUNet [21] 0.177 0.085 78.78 88.13
EGE-UNet [22] 0.053 0.072 79.81±0.10 88.77±0.06

LB-UNet(ours) 0.038 0.098 80.13±0.41 88.86±0.28
UNet [20] 7.77 13.76 77.86 87.55

MobileViTv2 [17] 1.87 0.70 79.88 88.81
MobileNetv3 [9] 1.19 0.10 78.55 87.98

ISIC2018 UNeXt-S [25] 0.32 0.10 79.09 88.33
MALUNet [21] 0.177 0.085 80.25 89.04
EGE-UNet [22] 0.053 0.072 80.94±0.11 89.46±0.07

LB-UNet(ours) 0.038 0.098 81.37±0.10 89.54±0.05

Table 2: Ablation performances of the single module.
Model Params(M)↓ GFLOPs↓ mIoU(%)↑ DSC(%)↑
Baseline 0.107 0.072 80.03 88.24

Baseline+GSA 0.028 0.059 80.50 88.36
Baseline+PMA 0.107 0.073 81.07 88.97

Baseline+ConvLayer 0.112 0.097 81.36 89.31
Baseline+Down 0.110 0.087 81.23 88.99

Table 3: Ablation performances of ground truth boundary map.
Model Boundary line Genetic KP Random KP mIoU(%)↑ DSC(%)↑

✓ ✓ 81.37 89.54
LB-UNet ✓ ✓ 81.29 89.44

✓ 81.20 89.48
✓ 81.18 89.29

encoder and decoder layer consists of a convolution module with a kernel size of
3, and the number of channels in each stage is {8, 16, 24, 36, 48, 64}. In Table 2,
we conducted ablation experiments on each single module. Note that (1) GSA
replaces the convolution modules in Stages 4−6, (2) The ConvLayer, referenced
from ConvUNeXt [7], is only utilized in the encoder part of Stage 3. (3) The
Down operation replaces the max-pooling layers in Stages 1−3 with convolution
functions of kernel size 2. Table 3 presents the ablation results for the ground
truth boundary maps. LB-UNet achieves better segmentation accuracy when
using boundary maps with boundary line compared to those without boundary
line. Using genetic key point outperforms using random key point. Please note
that the random key point mentioned here is generated through random itera-
tions for 40,000 times, while the genetic key point is generated through genetic
iterations with a population size of 300 for 100 iterations.
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4 Conclusion

In this paper, we propose a lightweight model based on segmentation region
and boundary prediction, which can be applied to mobile dermoscopes and edge
devices. We introduce two advanced modules. GSA utilizes a linear attention
mechanism to significantly reduce the number of parameters and computational
complexity. PMA effectively captures information from the segmentation region,
particularly the boundary, to enhance the segmentation accuracy. In the PMA
module, we propose a novel boundary key point selection algorithm based on
genetic algorithm, which produces enhanced results. Looking ahead to future
work, our plan is to implement LB-UNet on mobile devices to achieve real-time
segmentation detection. Additionally, LB-UNet is proposed only for skin lesion
segmentation, and we intend to extend our efficient design to other tasks.
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