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Abstract. We introduce Scaffold Prompt Tuning (ScaPT), a novel
prompt-based framework for adapting large-scale functional magnetic
resonance imaging (fMRI) pre-trained models to downstream tasks, with
high parameter efficiency and improved performance compared to fine-
tuning and baselines for prompt tuning. The full fine-tuning updates
all pre-trained parameters, which may distort the learned feature space
and lead to overfitting with limited training data which is common in
fMRI fields. In contrast, we design a hierarchical prompt structure that
transfers the knowledge learned from high-resource tasks to low-resource
ones. This structure, equipped with a Deeply-conditioned Input-Prompt
(DIP) mapping module, allows for efficient adaptation by updating only
2% of the trainable parameters. The framework enhances semantic inter-
pretability through attention mechanisms between inputs and prompts,
and it clusters prompts in the latent space in alignment with prior knowl-
edge. Experiments on public resting state fMRI datasets reveal ScaPT
outperforms fine-tuning and multitask-based prompt tuning in neurode-
generative diseases diagnosis/prognosis and personality trait prediction,
even with fewer than 20 participants. It highlights ScaPT’s efficiency in
adapting pre-trained fMRI models to low-resource tasks.

Keywords: FMRI pre-trained models · Prompt tuning · Neurodegen-
erative disease · Neuroticism.

1 Introduction

In the realm of neuroimaging, the emergence of large-scale, self-supervised pre-
trained models/foundation models for fMRI, has demonstrated a significant
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promise in improving performance across a variety of downstream tasks through
fully fine-tuning [11,16]. However, fine-tuning in fMRI models requires updating
all the pre-trained parameters given target task training data, which is com-
putationally intensive and time-consuming. Moreover, when confronted with a
scarcity of training data, large pre-trained models are at risk of overfitting. It
has also been shown that fine-tuning could distort the learned feature space [14].

In natural language processing (NLP), the concept of soft prompt tuning
presents an efficient alternative for adapting large language models (LLMs) [10].
This technique involves keeping the original model frozen while only training
soft prompts prepended to the input. Such an approach has been demonstrated
to enhance the decoding of information represented in the human brain for lan-
guage understanding using fMRI [14]. Soft prompts have also proven capable of
distinguishing between different communities within brain networks [2]. Despite
its efficiency, prompt tuning often results in decreased task performance com-
pared to fine-tuning [7] and fails to leverage the extensive knowledge embedded
in a diverse array of high-resource tasks [1]. Building predictive models using
neuroimaging data of disease cohorts (e.g., neurodegenerative disease such as
Alzheimer’s disease (AD)) is typically a low-resource task due to the small sam-
ple size. Given the emerging large-scale neuroimaging data from healthy cohorts
with comprehensive behavioral phenotyping, brain-behavior mapping in healthy
populations is usually categorized as high-resource tasks. The knowledge gained
from these high-resource tasks is invaluable and could significantly bolster the
model performance in low-resource applications (e.g., disease prognosis).

Several works in NLP have designed prompt tuning strategies under multi-
task transfer learning framework [1,15,17], which transfer knowledge from high-
resource tasks to low-resource ones. Their source prompts are trained through
multitask learning and subsequently utilized to initialize the model for a spe-
cific target task. However, they either overlook the intricate relationship between
prompts and input [15,17], or map an input to a task-agnostic prompt space with-
out capturing the input’s different aspects for various tasks [1]. Furthermore, in
NLP, soft prompts function as a “black box”, lacking a semantic understanding of
the information encapsulated within the embeddings. Lacking of interpretability
makes it suboptimal for clinical application.

In this study, we introduce Scaffold Prompt Tuning (ScaPT), the first
prompt-based adaptive framework for fMRI pre-trained model with remarkable
parameter efficiency and superior performance using limited downstream train-
ing data. Our contributions are four-fold: 1) We have designed a hierarchical
prompt structure that evolves soft prompts into three levels: modular prompts
at the super-domain level (treated as fundamental skills of the model) for basic
fMRI knowledge embedded in the model; phenotype prompts combining modu-
lar prompts to represent different phenotypes in the human brain; and vertex
prompts merging phenotype prompts and a newly-initialized target prompt for
target tasks. Integration is guided by attention between inputs and prompts. 2)
We propose a shared Deeply-conditioned Input-Prompt (DIP) mapping module
for both source and target training, designed to uniquely map inputs to different
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Fig. 1. Schematic overview of Scaffold Prompt Tuning (ScaPT) framework. ScaPT op-
erates in two stages: Source Training (ST), where it creates phenotype prompts by
interpolation of modular prompts, and Target Training (TT), where it blends phe-
notype prompts with a new target prompt for downstream tasks with fewer resources.
Interpolation weights are determined by the attention between the input and prompts.

prompt spaces. 3) We demonstrated that our proposed phenotype prompts form
clusters, which align well with prior knowledge. Moreover, the proposed attention
mechanism between inputs and prompts offers significant semantic interpretabil-
ity. 4) Through experiments on two public resting state fMRI datasets, ScaPT
demonstrates remarkable parameter efficiency, outperforming both fine-tuning
and baseline prompt tuning methods by updating only 2% of the trainable
parameters. It achieves superior results in neurodegenerative disease diagno-
sis/prognosis, as well as personality trait prediction, with very limited training
data.

2 Method

Problem Setup. Given an fMRI pre-trained model f(·) with parameters θ,
and a high-resource fMRI dataset D = {(xi,yi)}, where each data xi is paired
with yi = [y(1,i), y(2,i), ..., y(n,i), ..., y(N,i)] corresponding to N high-resource tasks
T = {T1, ..., Tn, ..., TN}, our goal is to learn a new low-resource task Ttarget by
efficiently updating parameters ϕ given the target task dataset D′ = {(x′, y′)}
(|D| > |D′|). The number of updating parameters ϕ is much smaller than that
of trainable parameters θ in the pre-trained model f(·).

Overview. Prompts in ScaPT are trainable embeddings that direct the model’s
responses without changing its architecture. Shown in Figure 1, ScaPT operates
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in two stages: Source Training (ST), in which trainable modular prompts (encod-
ing abstract information and fundamental skills required for fMRI understand-
ing) are interpolated to one participant-wise phenotype prompt. Participant-wise
prompts corresponding to the same phenotype are averaged to formulate group-
wise phenotype prompt, serving as knowledge base for the subsequent stage:
Target Training (TT). It combines group-level phenotype prompts with a new
target prompt to formulate a participant-wise vertex prompt for the target task.
The weights for interpolation of prompts are from attention between projected
input and prompts, after mapping the input to prompt space through Deeply-
conditioned Input-Prompt (DIP) mapping.

Deeply-conditioned Input-Prompt (DIP) Mapping. Previous research
indicates that soft prompts might not match input embedding spaces [9], mak-
ing direct attention between input and prompts unreliable. A proposed solution
involves a network for projecting inputs into prompt spaces [1], but it falls short
in multitasking scenarios by projecting inputs uniformly, thus failing to cap-
ture task-specific information. It also increases training parameters due to the
addition of a separate network and relies on linear projections, which may not
effectively represent the complex relationships between inputs and prompts.

To address the above issues, we propose Deeply-conditioned Input-Prompt
(DIP) mapping M through reusing f(·) (Figure 1). We introduce learnable deep
conditioning (DC) tokens C = {c1, ..., cn, cN |cn ∈ Re×m} that are prepended
to the input, to guide f(·) to map the input to an appropriate prompt space
conditioned on the given task. The prediction output from f(·) is then fed into a
linear projection layer and a Layer Norm LN(·) to avoid gradient explosion [1].
To deeply guide the conditional mapping from input to prompt spaces, we inject
DC to every layer of f(·). Formally, the input-prompt mapping is defined as:

H(n,i) = f([cn;Xi]); Ĥ(n,i) = LN(NonLinear(WTH(n,i)) (1)

where Xi ∈ Rl×m is the “text-like" representation generated from fMRI fol-
lowing [16], describing the signal of each of m brain networks for each time
point l. Xi prepended by DC [cn;Xi] ∈ R(l+e)×m is input to the frozen f(·).
H(n,i) ∈ Rh is the conditional output from f(·), with h representing the hid-
den dimension. W ∈ Rh×h is the projection parameter to be updated during
training, and Ĥ(n,i) ∈ Rh is the projected input.

Source Training (ST). A healthy cohort encompasses a large number of par-
ticipants, with various phenotypes associated (high-resource tasks). In the first
stage - Source Training (ST), we aim to train a set of phenotype prompts (PheP)
that encapsulate information on different behavior-relevant brain phenotypes. It
will serve as a source of knowledge for downstream tasks.

To better capture the relationship between input fMRI and prompts, and
boost the capacity of PheP to match the complexity of input, we model each
participant-wise PheP as an interpolation of a set of modular prompts (MoP),



ScaPT 5

with the computed attention between input and MoP as the weights for interpo-
lation, as shown in Figure 1. Each MoP can be seen as a basic skill; solving a task
involves combining these fundamental skills [15]. Formally, for a high-resource
task Tn ∈ T , our training objective is to maximize the likelihood of predicting
the label y(n,i) as follows:

max
P(n,i),M

pθ(y(n,i)|[P(n,i);Xi]) (2)

where P(n,i) ∈ Rd×m is the participant-wise PheP with length d for task Tn.
Xi prepended by the prompt [P(n,i);Xi] ∈ R(l+d)×m is input to the frozen f(·)
to predict ŷ(n,i). P(n,i) is generated from the interpolation of K MoP:

P(n,i) =
K∑

k=1

α
(n,i)
k ·Ṗk, α

(n,i)
k =

e<P̂k,Ĥ(n,i)>/τ∑K
i=1 e

<P̂i,Ĥ(n,i)>/τ
; Pn =

1

|D|

|D|∑
i=1

P(n,i) (3)

where we compute the attention score α
(n,i)
k between MoP P̂k ∈ Rh (max-

pool of Ṗk from Rd×m to Rm, followed by a linear transformation to Rh) and
Ĥ(n,i). τ is the temperature. P(n,i) is a participant-wise prompt for Xi. To
transfer the learned prompts to the next stage, we average P(n,i) to formulate
one group-wise PheP Pn, which is utilized subsequently for next stage.

Target Training (TT). Prompts for a new task could be blended with pre-
trained prompts to incorporate gained knowledge [1]. In the second stage - Target
Training (TT), we first initialize a target prompt Ptarget tailored for a target
task. To capitalize on the insights embedded in Pn, we learn a vertex prompt
P∗, by interpolating Pn and Ptarget given attention computed by M (Figure 1).
Similar to ST, the goal of TT is to maximize the likelihood of predicting the
correct target task label y′, given the concatenation of P∗ and input X′:

max
Ptarget,M

pθ(y
′|[P∗;X′]); P∗ = Ptarget +

N∑
n=1

βn ·Pn (4)

where P∗ is the interpolation of Ptarget and Pn. βn is the attention score
between X′ and the Pn computed by M.

3 Experiments

Datasets. In ST, resting state fMRI data from 656 participants of the Lifespan
Human Connectome Project Aging (HCP-A) [3,6] were analyzed to predict 38
phenotypes (see details in the supplementary material), alongside sex and age.
The brain-behavior phenotypes established at this stage include three domains:
cognition, personality, and social emotion. We hypothesized that ScaPT would
perform well in tasks relevant to these domains. In TT, ScaPT was assessed on
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two classification tasks for neurodegenerative disease diagnosis/prognosis (re-
lated to cognition) using Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[8], and a regression task for personality trait prediction (related to personality
and social emotion) using UK Biobank (UKB) [13]. FMRI in MNI space were
preprocessed using fMRIPrep [5] (20.2.3) with the default settings and parcel-
lated to 1024 networks using DiFuMo with Nilearn library (0.10.4).

The experiments of TT were performed similar to [16], using limited data to
showcase the adaptation performance and varying the size to demonstrate how
performance scales. (1) Control Normal (CN) v.s. Mild Cognition Impairment
(MCI) classification: 340 ADNI participants, with 170 for each class. We first
allocated an independent test set consisting of 100 CNs and 100 MCIs. From the
remaining 140, we randomly sampled 3/5/10 data per class for training, using
the rest for validation. Sampling was repeated 10 times, and accuracy and F1
score were reported with mean and standard deviation. (2) Amyloid Positive
v.s. Negative classification: 100 ADNI participants with normal cognition (50
for each class). It was performed under the similar experimental setting with
an independent test set consisting of 25 for each class. (3) Neuroticism Score
Prediction: Neuroticism describes a tendency to experience unsettling feelings.
The score ranges from 0 to 12 (normalized to 0-1 for training), with higher
score corresponding to a greater tendency. We have 1000 UKB participants with
neuroticism scores (800 for training and 200 for testing). Training samples were
increased to 30/50/100 (randomly sampled from 800), following the same settings
as the prior tasks.

Training Details. We adopt the state-of-the-art fMRI language model [16],
with causal sequence modeling structure, for our downstream adaptation. It was
pre-trained using 11,980 runs of 1,726 individuals across 34 datasets. The pre-
trained model contains 4 GPT-2 layers [12], with 12 attention heads in each self-
attention module. To utilize the pre-trained model, the input must be parcellated
by Dictionaries of Functional Modes (DiFuMo) [4]. The preprocessed input to
the model is X ∈ Rl×m obtained by DiFuMo, where l is the input sequence
length and m = 1024 networks. The hidden dimension in the model is h = 768.
We utilized K = 5 modular prompts. Prompt/DC length is d = e = 5. Refer to
supplementary for more hyper-parameters and experimental settings.

Main Results. In a scenario with limited training data, we evaluated ScaPT
against fine-tuning and three multitask-based prompt-tuning approaches: SPoT
[17], MP² [15], and ATTEMPT [1] (Table 1 and 2). For fine-tuning, f(·) un-
derwent direct fine-tuning using TT datasets (ADNI/UKB). Meanwhile, for the
multitask-based methods, prompts were initially trained on ST datasets (HCP-
A), which were then served as the prompt initialization in the TT stage.

ScaPT demonstrated superior performance over both fine-tuning and other
prompt tuning methods across various sizes of training datasets, scaling well
with the number of training data. This underscores ScaPT’s effectiveness in
transferring knowledge from high-resource tasks to those with scarce resources.

https://nilearn.github.io/dev/modules/description/difumo_atlases.html
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Table 1. Accuracy (Acc) and F1 score on CN v.s. MCI and Amyloid aβ + ve v.s.
aβ − ve classification (%, mean(standard deviation) for 10 independent runs), trained
on varying training dataset size (I = 3, 5, 10 per class). The best results are in bold,
with * denoting significant improvement (p < 0.05).

Methods
I = 3 I = 5 I = 10

Acc ↑ F1 ↑ Acc ↑ F1 ↑ Acc ↑ F1 ↑

CN v.s. MCI

Fine-tuning [16] 53.0(3.1) 47.3(3.7) 61.1(3.9) 57.1(5.4) 65.3(2.7) 62.0(3.2)
SPoT [17] 56.3(.70) 51.4(1.6) 65.6(.35) 62.9(.66) 64.8(2.0) 61.2(2.5)
MP2 [15] 65.0(2.9) 59.2(3.8) 71.4(3.1) 68.3(3.4) 74.4(2.0) 71.3(2.5)
ATTEMPT [1] 64.3(1.5) 64.4(2.1) 75.0(1.9) 74.9(2.0) 77.3(2.0) 76.5(2.2)
ScaPT 69.7*(2.8) 67.4*(2.9) 75.1(2.1) 73.3(2.8) 80.3*(2.2) 79.4*(2.2)

Amyloid aβ+ve v.s. aβ−ve

Fine-tuning [16] 51.1(.15) 52.3(1.1) 64.2(0.2) 66.1(3.2) 71.1(.15) 72.2(.01)
SPoT [17] 55.9(.49) 50.7(.88) 58.9(.20) 51.1(.71) 64.5(.35) 58.1(.26)
MP2 [15] 51.3(2.2) 53.2(1.2) 70.6(.13) 71.2(2.1) 78.4(.15) 79.1(.21)
ATTEMPT [1] 57.6(2.6) 61.7(1.3) 68.1(.37) 70.2(.69) 80.6(1.6) 81.5(1.4)
ScaPT 61.2*(1.2) 63.1*(1.1) 71.2(.53) 72.1*(.25) 86.0*(.10) 87.7*(.10)

Table 2. Mean Absolute Error (MAE,×10−1) and Pearson Correlation (ρ) on Neu-
roticism score prediction.

Methods
I = 30 I = 50 I = 100

MAE ↓ ρ ↑ MAE ↓ ρ ↑ MAE ↓ ρ ↑

Fine-tuning [16] 3.03(.43) 0.37(.008) 2.57(.21) 0.40(.002) 2.35(.00) 0.45(.002)
SPoT [17] 5.29(.74) 0.35(.005) 4.43(.69) 0.38(.004) 4.37(.58) 0.39(.003)
MP2 [15] 3.92(.15) 0.40(.004) 3.59(.16) 0.41(.003) 3.41(.12) 0.42(.002)
ATTEMPT [1] 2.85(.18) 0.38(.004) 2.37(.19) 0.43(.006) 2.11(.21) 0.45(.004)
ScaPT 2.53*(.27) 0.40(.003) 2.40(.25) 0.45*(.001) 1.90*(.06) 0.49*(.003)

Prompt Interpretation. In the ST stage, we created 40 phenotype prompts
for 38 phenotype predictions, alongside age and sex determinations. Remarkably,
these prompts naturally formed into three clusters - Personality, Social Emotion,
and Cognition - without prior supervision, indicating they effectively capture
different pillars of brain-behavior associations (Figure 2-1).

During the TT stage, the attention scores between input and phenotype
prompts (Figure 2-2) aid in interpreting the target task. Attention score vec-
tors were averaged across inputs, and then attributes within each group were
averaged (without the one for Ptarget). These five values were normalized for
analysis. Aligning well with the literature, ScaPT shows a focus on “cognition"
or “age" in neurodegenerative disease diagnosis/prognosis task, while it focuses
on “personality" for neuroticism score prediction.
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Age

Sex

Personality

Social Emotion

Cognition

0 0.1 0.2 0.3 0.4 0.5

CN/MCI classification
Amyloid +/- classification
Neuroticism

(1). 2D Phenotype Prompts Space (2). Attention Distribution

(3). Ablation Study (4). Model Performance v.s. Log of Number of Parameters

Fig. 2. Further analysis: (1) visualization of 2D phenotype prompts space, (2) inter-
pretation of target tasks through attention distribution, (3) ablation study, and (4)
comparison of model performance versus numbers of parameters.

Ablation Study and Parameter-efficiency. We evaluated ScaPT against
its ablations (Figure 2-3), including ScaPT w/o PheP (using MoP directly for
P∗ formulation without high-resource task training), ScaPT w/o MoP (learn-
ing Pn without prompt width expansion), and ScaPT w/o DIP (utilizing AT-
TEMPT’s subnetwork for input-prompt mapping). The absence of PheP led
to a significant performance drop, underscoring the importance of high-resource
task knowledge in boosting low-resource task performance. ScaPT outperformed
its counterparts lacking MoP, demonstrating MoP’s role in enhancing expressive
capacity by widening prompts. Additionally, ScaPT’s DIP module surpassed AT-
TEMPT’s subnetwork in mapping inputs to prompts, effectively capturing com-
plex input-prompt relationships using f(·). In Figure 2-4, we compared ScaPT’s
performance with other models relative to their trainable parameters. ScaPT
significantly outperformed fine-tuning, MP2, and ATTEMPT, despite updating
only 2% of total parameters. Although SPoT had the fewest trainable parame-
ters, its performance lagged, likely due to its limited feature capture capability.
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4 Conclusion

We introduce Scaffold Prompt Tuning (ScaPT), the first prompt-based adapta-
tion framework for large-scale fMRI pre-trained models, compatible with very
limited training data. ScaPT features a hierarchical prompt structure that facil-
itates knowledge transfer from high-resource tasks to those with fewer resources.
Moreover, we develop a Deeply-conditioned Input-Prompt (DIP) mapping to
capture the complex relationship between the input and prompt spaces. Our
experiments demonstrate ScaPT’s exceptional parameter efficiency and its su-
perior performance in neurodegenerative disease diagnosis or prognosis, as well
as personality trait prediction from resting-state fMRI data. In addition, our at-
tention mechanism offers semantic interpretation for target tasks. Future studies
could expand ScaPT’s reach to longitudinal data, and explore its possibility for
prompting vision models.
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