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Abstract. Deep learning (DL) methods typically require large datasets
to effectively learn data distributions. However, in the medical field, data
is often limited in quantity, and acquiring labeled data can be costly. To
mitigate this data scarcity, data augmentation techniques are commonly
employed. Among these techniques, generative models play a pivotal
role in expanding datasets. However, when it comes to ultrasound (US)
imaging, the authenticity of generated data often diminishes due to the
oversight of ultrasound physics.
We propose a novel approach to improve the quality of generated US
images by introducing a physics-based diffusion model that is specifi-
cally designed for this image modality. The proposed model incorporates
an US-specific scheduler scheme that mimics the natural behavior of
sound wave propagation in ultrasound imaging. Our analysis demon-
strates how the proposed method aids in modeling the attenuation dy-
namics in US imaging. We present both qualitative and quantitative
results based on standard generative model metrics, showing that our
proposed method results in overall more plausible images. Our code is
available at github.com/marinadominguez/diffusion-for-us-images.

Keywords: Ultrasound · Synthetic Image Generation · Diffusion Mod-
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1 Introduction

The scarcity of labeled medical data poses a significant challenge for training
deep learning models, thereby encouraging the exploration of alternative solu-
tions. Generative models have emerged as a popular approach to address this
issue, allowing the generation of synthetic data that complements the limited
available labeled examples [10]. By producing synthetic samples, generative mod-
els, such as diffusion models, can significantly reduce the problem of data scarcity,
protect patient privacy, and address class imbalance [9].

Contrasting to natural images, where diffusion models have shown great suc-
cess, ultrasound images are formed through the interpretation of echo patterns.

*Shared first authorship.

https://github.com/marinadominguez/diffusion-for-us-images
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Therefore, generating realistic synthetic US images requires accounting for their
underlying physics. B-mode ultrasound formation process involves emitting ul-
trasound pulses and capturing returning echoes generated by the interaction of
sound waves with tissues [19]. This interaction leads to reflection, refraction, and
attenuation, posing challenges in capturing internal structures [6]. Understand-
ing these challenges, particularly attenuation, is crucial, as the upper regions
appear more defined and brighter due to the stronger signal, while the lower re-
gions become darker as the signal diminishes with depth. Addressing this gradual
attenuation is key to enhancing the realism of synthetic US images.

Diffusion models in US imaging were initially used for tasks such as denoising
and image generation. Initial studies have focused on reducing speckle noise and
improving image clarity [5,25,16]. More recent research propose methods that re-
duce noise but preserve the speckle texture, enhancing image quality [1]. Experi-
mental results from these studies show that such methods outperform traditional
denoising techniques in both Peak Signal to Noise Ratio (PSNR) and General-
ized Contrast to Noise Ratio (GCNR) [15]. Currently, the use of these models
extends beyond denoising tasks. This includes semi-supervised learning for US
segmentation [20] and image generation from semantic maps [18], both works
showcasing significant improvements in segmentation accuracy. These studies
demonstrate the power of diffusion models in enhancing US imaging and the
potential for boosting DL models in tasks like image segmentation [2].

While diffusion models have shown remarkable success in generating high-
quality images across various domains, their direct application to US imaging
overlooks its physical properties critical to this modality [21,23,22]. Consider-
ing the significant differences between B-Mode ultrasound and natural images,
applying the same synthetic image generation methods to both is impractical.
Consequently, we have developed an approach that adapts standard diffusion
models to better align with the actual process of US image generation.

Contributions This paper presents a novel approach to diffusion models de-
signed specifically for US image generation. We propose a new noise scheduler
inspired by the natural behavior of sound wave propagation. This scheduler sim-
ulates the attenuation of echoes returning to a US receiver. We consider the
changes in depth-dependent US resolution and put more emphasis on regions
closer to the probe, where images inherently show greater clarity, detail, and
reliability of internal structures. We evaluate and compare the generated im-
ages qualitatively and quantitatively against a baseline with a conventional noise
scheduler, both with and without semantic labels, on publicly available datasets.

2 Methodology

This section details the adaption of diffusion models for US synthesis by inte-
grating a novel noise scheduler: the B-maps. We show that by introducing this
scheduler, which is designed to mimic the natural attenuation of sound waves
interacting with tissues, we are able to generate more plausible B-mode images.
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2.1 Background

Forward process. DDPM [8] defines the forward diffusion process as a Markov
chain where Gaussian noise is added in successive steps to obtain a set of noisy
samples. Consider q(x0) as the uncorrupted (original) data distribution. Given
a data sample x0 ∼ q(x0), a forward noising process p which produces latent x1

through xT by adding Gaussian noise at time t is defined as follows [1]:

q(xt|xt−1) = N (xt;
√
1− βt · xt−1, βt · I), ∀t ∈ {1, . . . , T}, (1)

where T represent the number of diffusion steps and β1, . . . , βT ∈ [0, 1] the noise
scheduler across diffusion steps [9]. Considering αt = 1 − βt and ᾱt =

∏T
t=1 αt,

by applying the parametrization trick: xt =
√
αtx0 +

√
1− αtε, t times, one can

directly sample a step of the noised latent conditioned on the input x0 [13]:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

Reverse process. The reverse process seeks to approximate a sample from the
original data distribution q(x0) by starting from a standard Gaussian distribu-
tion p(xT ) = N (xT ; 0, I) and iteratively denoising towards x0. To this end, we
can parameterize this reverse process as follows:

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1|xt) (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), Σθ(t)), (4)

employing learned parameters to guide the reverse diffusion towards accurate
reconstruction of the original data. This dual-phase approach can create high-
quality images from noise, laying a solid foundation for our method.

2.2 B-Maps Definition

Central to our approach is the introduction of B-Maps; these matrices, have the
same dimensions as the US images, and allow for precise control of the noise level
at each pixel. In this way, we change how the standard DDPMs introduce noise
in the image. While DDPM, originally designed for natural images, applies noise
uniformly in the image, the B-Maps scale the noise across the vertical axis of
the image, simulating the top-to-bottom image construction of US imaging. Our
novel adaptation introduces more noise—and thus, faster convergence towards a
standard Gaussian distribution—at the bottom of the image than at the top. As
a result, we define a diffusion model that focuses on learning the distribution of
the upper region of the image first before addressing the inherently noisier lower
region, as the sound wave loses strength the deeper it propagates into the body.
This prioritized learning process ensures that the most reliable details—those
closer to the probe—are captured with higher fidelity and we also prevent coming
up with artifacts and non-anatomically plausible features. An illustration of the
definition of B-Maps is shown in Figure 1.



4 Domínguez et al.

Fig. 1. Evolution of B-maps across time-steps. In every timestep, the values in
the B-Maps decrease top-to-bottom from 1 to a number, γ. As the timestep increases,
γ goes from 1 to 1− ϵ, with ϵ being a small fixed value in the interval (0, 1).

2.3 Denoising Diffusion Probabilistic Models with B-Maps

Forward Process. We modify the standard forward pass (Eq. 2) that intro-
duces the noise in the image centered in ᾱtx0 by integrating noise in a way
that better reflects US image formation. By incorporating our B-maps noise
scheduler, we specifically adjust the distribution’s mean and variance towards
the image’s lower part. This adjustment is done by point-wise multiplying the
existing noise schedule αt and the preceding image xt−1 with B-map scheduler
Bt at time t. This leads to our proposed new forward distribution:

q(xt|xt−1) = N (xt;
√
ᾱt · B̄txt−1, (1− ᾱt · B̄t)I) (5)

with: ᾱt =
∏T

t=1 αt and B̄t =
∏T

t=1 Bt and · denoting the point-wise multipli-
cation. This method guides the diffusion model’s behavior, introducing noise in
the forward process by simulating the progressive attenuation of echo intensity.
The visual representation of this modified process is shown in Fig. 2.

Reverse Process. Incorporating B-maps into our model alters traditional dis-
tributions (Eq. 4), leading to new derivations for the reverse process, detailed in
the Supplementary Material. Thus, the newly derived posterior distribution for
our diffusion model becomes:

q(xt−1|xt, x0) ∝ N (xt−1;µθ(xt, t), Σθ(t)) ,

where

µθ(xt, t) =

√
αt ·Bt(1− ᾱt−1 · B̄t−1)xt +

√
ᾱt−1 · B̄t−1(1− αt ·Bt)x0

1− ᾱt · B̄t

Fig. 2. Forward pass: Noise addition from bottom to top. Linearly-scheduled cone-
shaped B-Maps on the top row and the visualization of the noising process of the
US image in the bottom row. B-Maps are applied at each step, making the gaussian
distribution converge earlier on the bottom than on the top.
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Fig. 3. Reverse Process: denoising the image. Initially focusing on the area near the
probe, the model progresses to denoise the image toward the bottom, mimicking the
way US images are generated.

and

Σθ(t) =
(1− αt ·Bt)(1− (ᾱt−1 · B̄t−1))

1− (ᾱt · B̄t)
I

This reverse distribution considers the varying noise levels influenced by B-maps,
creating a more natural top-to-bottom reconstruction of US images, as we can
see in Figure 3.

In our work, we introduced this novel noise scheduler into Guided-Diffusion
(GD) [4] and Semantic Diffusion Models (SDM) [24]. Guided-Diffusion is based
on the improved DDPMs [14] and enhances the generation process by utilizing
guidance mechanisms. SDMs, on the other hand, extend the diffusion framework
by incorporating semantic information. SDMs include the integration and uti-
lization of semantic labels during the generation process and have greater control
over the output characteristics by utilizing semantic information.

We modified these models by replacing the original equations that define
the diffusion process with those incorporating B-Maps. Specifically, the equation
that introduces noise in the forward pass of these baselines was replaced with our
derived Eq. (5). Additionally, we defined our noise scheduler, the B-Maps, and
adjusted the reverse process to incorporate them. Consequently, for the original
variance in the models, we now use our newly derived variance, Σθ(t). These
adaptations allow us to generate US images from datasets with and without
semantic labels, using SDM and Guided-Diff correspondingly. By incorporating
our B-Maps into these pre-existing frameworks, we can compare the effectiveness
of our approach against the original models without B-Maps.

3 Experimental Setup

3.1 Datasets

SegThy dataset contains annotated 3D US images of the thyroid [11] from
28 healthy volunteers, acquired with Siemens Acuson NX-3 US machine with a
12MHz VF12-4 probe. We extracted 2D slices and labels from the 3D US scans
and removed the images without a thyroid label or with empty labels, totalling
2,250 images, where 512 were used for validation. The dataset is available here.

https://www.cs.cit.tum.de/camp/publications/segthy-dataset/
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CAMUS dataset includes 400 patient images for training and 50 for valida-
tion [12]. Each patient contributes four images at both end-diastole (ED) and
end-systole (ES) across two- and four-chamber views. In total, 1600 training and
200 validation images. Following Stojanovski et al. [18], we applied five random
affine and elastic deformations. This augmented the dataset to 8000 training and
1000 validation images. The dataset can be found here.

Liver images were acquired in-house using a tracked probe ACUSON Juniper
(Siemens Healthineers, Erlangen, Germany) with a 5C1 convex probe. We scanned
14 volunteers aged between 22 and 34. After excluding images with more than
50% shadow, we ended up with 6,900 2D slices, where 1000 were used for val-
idation. The images were horizontally padded to become square and resized to
256 for our experiment.

3.2 Experiments

We train our model separately on each dataset and analyse the image outputs
both qualitatively and quantitatively. The qualitative evaluation involves a visual
comparison of synthetic images produced by our approach against those gener-
ated by well-established baseline models, GD and SDM, to visually highlight the
advancements our model offers in terms of image realism and fidelity.

Metrics Quantitatively, we calculate standard metrics in image generation
model evaluation: Fréchet Inception Distance (FID), Learned Perceptual Im-
age Patch Similarity (LPIPS), Structural Similarity Index Measure (SSIM), and
Peak Signal-to-Noise Ratio (PSNR). In measuring FID [7], we choose to use
a different feature layer of the Inception Network instead of the default pool3
layer. We use the first-max-pooling and second-max-pooling layers that capture
fundamental image features without relying on the ImageNet-specific learned
parameters, offering a more relevant evaluation for US images. The metrics of
LPIPS, SSIM, and PSNR are computed for the CAMUS and Thyroid datasets,
given their availability of semantic labels. These metrics are calculated for all
corresponding pairs of images of the synthetical data and the original data. To
compare the results and draw conclusions, we calculate the average, standard
deviation, and range of these metrics.

Training and Hyper-parameters We performed the training with a batch
size of 4, learning rate of 0.0001 and 2000 diffusion steps. The image resolutions
varied: 128 for CAMUS and SegThy and 256 for Liver. The number of training
iterations also differed, with 28,000 for CAMUS, 36,000 for Liver, and 50,000
for SegThy, stopping earlier for some datasets as they achieved convergence.
Following previous works [4], we selected a cosine scheduler for the α values and
a square root scheduler for the B-maps. Through our experiments, we determined
the optimal minimum values for the B-maps to be 0.96 and 0.97, which yielded
the best results.

https://humanheart-project.creatis.insa-lyon.fr/database/#collection/6373703d73e9f0047faa1bc8
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Fig. 4. Qualitative comparison: The top row displays label maps of SegThy and
CAMUS datasets. For the liver dataset, no labels were available, and the Guided-
Diffusion model was used. The bottom row shows the US images generated with B-
Maps (left) versus without B-Maps (right) for each dataset. The overlaying arrows
highlight key differences: in the thyroid dataset, the tracheal area appears darker in
the image with the B-Map, consistent with the presence of air; in the CAMUS dataset,
the borders of the heart chambers are better visualized in the image with the B-Map
rather than without. No arrows were added to the liver images as they are not paired
due to the absence of labels.

4 Results and Discussion

4.1 Qualitative Analysis

Visually, the integration of B-Maps has demonstrated a notable improvement in
the synthetic images generated using both SDM and GD. Figure 4 showcases
examples from each dataset, illustrating the improvement in image quality and
realism, especially in terms of contrast in the upper regions of the images, align-
ing with the known characteristics of US scans. Additional visual comparisons
are available in Supplementary Material.

4.2 Quantitative Evaluation

The improvement achieved by B-Maps is also evident in the quantitative metrics
used to evaluate image quality. FID scores, as shown in Table 1, calculated with
pytorch-fid [17], underscore the superiority of our proposed method over the
baseline across all datasets. The scores from the 1st and 2nd max-pooling layers of
the Inception Network for all synthetically generated images from the validation
set demonstrate our method’s ability to produce images that are closer to real US
images, with a notable reduction in the FID scores. This improvement indicates
that our generated images have higher fidelity and are statistically closer to the
distribution of real US images.

In our evaluation, the LPIPS metric, in Table 2, computed using Perceptual-
Similarity [26], provides insight into the perceptual quality of generated images,
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Table 1. FID Scores across Datasets. Features for FID calculations are extracted
from the first-max-pooling (1st MP) and second-max-pooling (2nd MP) layers of Incep-
tion. Results indicate that our method surpasses the baseline in generating datasets
with more realistic images, as evidenced by the significantly lower FID scores.

Baseline Proposed method

Dataset 1st MP 2nd MP 1st MP 2nd MP

Thyroid 4.259 14.315 0.619 2.769
CAMUS 3.581 12.769 0.204 0.959
Liver 20.746 73.447 0.192 0.867

reflecting how closely the synthetic data resembles real US scans. The results
indicate that our method consistently yields lower LPIPS scores across Thyroid
and CAMUS datasets, implying that images generated by our method are more
realistic, aligning closely with the perceptual properties of real US scans.

Our SSIM and PSNR analyses, also detailed in Table 2 and computed using
torchmetrics [3], offer additional insight into the image quality improvements
achieved through our approach. While SSIM values show minimal differences
from baseline methods—indicating comparable structural integrity—the PSNR
values are significantly higher. This suggests that our method enhances image
precision by improving the signal-to-noise ratio, thus generating clearer and
sharper US images.

Table 2. LPIPS, SSIM, and PSNR Metrics Comparison: This table evaluates
the quality of generated US images for Thyroid and CAMUS datasets using LPIPS,
SSIM, and PSNR metrics. Lower LPIPS scores indicate closer resemblance to real
images. Additionally, our approach achieves higher SSIM and PSNR values compared
to baselines for both datasets, indicating better preservation of structural details and
improved clarity, reflecting improved image quality.

Baseline Our Method

Metric Thyroid CAMUS Thyroid CAMUS

L
P

IP
S Mean 0.362 0.234 0.316 0.161

Std. Dev. 0.129 0.127 0.066 0.047
Range 0.628 0.534 0.321 0.266

S
S
IM

Mean 0.279 0.265 0.292 0.297
Std. Dev. 0.137 0.131 0.094 0.092

Range 0.523 0.587 0.451 0.523

P
S
N

R Mean 14.302 13.118 16.798 15.871
Std. Dev. 5.526 4.511 2.468 2.545

Range 19.707 18.899 11.549 10.420
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5 Conclusion

This study presents a novel approach to US image synthesis by adapting diffu-
sion models with B-Maps. Our method introduces a customized noise schedule
that reflects the natural attenuation of US waves. This innovation significantly
enhances the realism of synthetic US images, as supported by our comprehensive
evaluation across several datasets.

While our model showcases promising advancements in synthetic US genera-
tion, it also opens the door to exploring more sophisticated models that further
incorporate ultrasound’s physical properties. Future directions could involve de-
veloping models that estimate attenuation maps at each diffusion step, offering
even more precise control over the synthetic image generation process.
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