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Abstract. The delineation of the Clinical Target Volume (CTV) is a crucial step 
in the radiotherapy (RT) planning process for patients with nasopharyngeal car-
cinoma (NPC). However, manual delineation is labor-intensive, and automatic 
CTV contouring for NPC is difficult due to the nasopharyngeal complexity, tu-
mor variability, and judgement-based criteria. To address the above-mentioned 
problems, we introduce SAM-RT, the first large vision model (LVM) designed 
for CTV contouring in NPC. Given the anatomical dependency required for CTV 
contouring—which encapsulates the Gross Tumor Volume (GTV) while mini-
mizing exposure to Organs-at-Risk (OAR)—our approach begins with the fine-
tuning of the Segment Anything Model (SAM), using a Low-Rank Adaptation 
(LoRA) strategy for segmenting GTV and OAR across multi-center and multi-
modality datasets. This step ensures SAM-RT initially integrates with anatomical 
prior knowledge for CTV contouring. To optimize the use of previously acquired 
knowledge, we introduce Sequential LoRA (SeqLoRA) to improve knowledge 
retention in SAM-RT during the fine-tuning for CTV contouring. We further in-
troduce the Prompt-Visual Cross Merging Attention (ProViCMA) for enhanced 
image and prompt interaction, and the Gate-Regulated Prompt Adjustment 
(GaRPA) strategy, utilizing learnable gates to direct prompts for effective CTV 
task adaptation. Efficient utilization of knowledge across relevant datasets is es-
sential due to sparse labeling of medical images for specific tasks. To achieve 
this, SAM-RT is trained using an information-querying approach. SAM-RT in-
corporates various prior knowledge: 1) Reliance of CTV on GTV and OAR, and 
2) Eliciting expert knowledge in CTV contouring. Extensive quantitative and 
qualitative experiments validate our designs. 
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1 Introduction 

Nasopharyngeal carcinoma (NPC) arises in the nasopharynx, a region where the nasal 
passages converge with the auditory tubes in the upper throat [1]. External beam radi-
ation therapy (RT) is a key treatment for NPC, requiring accurate delineation of clinical 
target volumes (CTV) for effective RT planning [2]. This involves identifying the gross 
tumor volumes (GTV) and organs-at-risk (OAR) to minimize radiation damage [2]. 

Manual segmentation in clinical practice is time-consuming and labor-intensive, 
with quality heavily dependent on the oncologist's experience [2–7]. Automatic delin-
eation of CTV for NPC is challenging due to the complex anatomy of the nasopharyn-
geal area and unclear boundaries with adjacent OAR. Recent advancements [8–10] en-
able direct CTV segmentation on computed tomography (CT) scans. However, achiev-
ing precise CTV delineation necessitates considering both the visual characteristics and 
spatial arrangement of the GTV and OAR. Kihara et al. [11] proposed using CT scans 
and GTV label for CTV contouring to provide explicit guidance, but their approach 
lacks understanding of OAR positioning. Jin et al. [12] improved esophageal CTV con-
touring by incorporating GTV and OAR information with Positron Emission Tomog-
raphy (PET) scans from one clinical dataset, however this approach requires multiple 
imaging modalities. The current literature lacks exploration in leveraging anatomical 
knowledge from multi-center and multi-modality datasets for the CTV contouring task. 

Recently, the Segment Anything Model (SAM) [13] has emerged as a cutting-edge 
large-scale vision model (LVM) that allows users to create masks for specific areas of 
interest using interactive methods like clicking, bounding boxes, or natural language 
prompts. SAM’s remarkable zero-shot and few-shot learning abilities with natural im-
ages [14] have gained attention across various domains. While studies [15–17] have 
adapted SAM for medical image segmentation, its potential for precise CTV contouring 
in RT treatment remains unexplored. 

In this study, we propose SAM-RT, a pioneering anatomy-aware and RT-specific 
LVM designed for CTV contouring in NPC. The learning of SAM-RT encompasses 
two critical factors: (1) Reliance of CTV on GTV and OAR: CTV contouring relies 
on the positioning of GTV and OAR. We initially employ a Low-Rank Adaptation 
(LoRA) strategy [18] to fine-tune SAM on segmenting GTV and OAR from multi-
center and multi-modality datasets, thereby incorporating relevant anatomical 
knowledge into SAM-RT for CTV contouring in NPC; (2) Eliciting expert knowledge 
in CTV contouring: Human expert knowledge is crucial for RT planning to accom-
modate patient-specific anatomical variations. To utilize expert knowledge in CTV 
contouring, we propose the Prompt-Visual Cross Merging Attention (ProViCMA) to 
enhance interaction between CT images and user prompts, along with the Gate-Regu-
lated Prompt Adjustment (GaRPA) strategy, which employs learnable gates to focus 
prompts on task-relevant blocks for effective adaptation. To facilitate knowledge reten-
tion in SAM-RT, we introduce Sequential LoRA (SeqLoRA), which updates LoRA 
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weights for CTV contouring while preserving anatomical knowledge learned from the 
previous stage. Our comprehensive quantitative and qualitative evaluations affirm the 
effectiveness of our design. 

2 Network Architecture 

We aim to enhance a decision function ℱ஼  in target domain ࣞ஼  for CTV contouring 
task ஼࣮  by leveraging knowledge ℱௌ encapsulated in source domain ࣞௌ through a pre-
trained SAM for natural image segmentation task ௌ࣮ (i.e., ℱௌ → ℱ஼). Considering the 
significant impact of GTV and OAR positioning on CTV delineation, a direct applica-
tion of ℱௌ → ℱ஼  without anatomical considerations appears unjustified. 

 
Fig. 1. Overview of the SAM-RT framework. SAM-RT learns from two key aspects: (a) Reliance 
of CTV on GTV and OAR: The SAM image encoder is first fine-tuned with learnable LoRA 
layers on the public ܵீ and ܵை datasets and clinical ܵ஼

ி dataset, enabling the acquisition of ana-
tomical knowledge regarding GTV and OAR; (b) Eliciting expert knowledge in CTV contouring: 
Sequential LoRA (SeqLoRA) is introduced to efficiently adapt transformer blocks to the CTV 
task using low-rank matrices, retaining anatomical knowledge learned from the initial stage. We 
further propose ProViCMA and GaRPA strategy to enhance interactivity between image and 
prompts, and to utilize learnable gates to focus prompts on task-relevant blocks effectively. 
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Therefore, we propose employing transfer learning to systematically integrate prior 
anatomical knowledge regarding the GTV and OAR from domain ࣞீ into our SAM-
RT framework. This involves adapting ℱௌ  to a newly derived decision function ℱீ  
specifically for GTV and OAR segmentation task ࣮ீ . The knowledge ℱீ  within ࣞீ is 
then used to enhance the performance of decision function ℱ஼  (i.e., ℱீ → ℱ஼) for the 
domain ࣞ஼  of CTV contouring task ஼࣮. Notably, the SAM-RT framework employs a 
sequential transfer learning process: ℱௌ → ℱீ → ℱ஼ . Through this strategy, we can 
ensure the effective utilization of pertinent datasets and tasks knowledge to enrich ℱீ   
with anatomical insights, which is then transferred to ℱ஼  for CTV contouring task with 
limited datasets. 

2.1 Reliance of CTV on GTV and OAR 

To integrate SAM-RT with prior knowledge of OAR and GTV, we initially fine-tune 
SAM-RT using a public dataset for GTV and OAR segmentation with CT and contrast-
enhanced CT (CECT) (SegRap2023 [19], ܵீ ), a public dataset for head-and-neck 
(HaN) OAR segmentation with CT and magnetic resonance (MR) (HaN-Seg [20], ܵை), 
and a clinical NPC dataset for GTV and OAR segmentation ܵ஼

ி. As shown in Fig. 1, 
our approach employs a wide range of multi-center and multi-modality datasets (ܵீ , 
ܵை , ܵ஼

ி) to improve CTV contouring task of a clinical NPC dataset (ܵ஼). 
We utilize SAM’s ViT-H as our image encoder (supplementary), freezing its param-

eters and employing LoRA for fine-tuning. Applying LoRA to the Query (ܳ) and Value 
(ܸ) projection layers enhance SAM-RT's performance by affecting the attention scores 
via the multi-head self-attention mechanism's reliance on cosine similarity (supplemen-
tary). For the prompt encoder, we initially remove all prompts in this initial stage, al-
lowing SAM-RT to fine-tune the learnable embedding. We fine-tune all the parameters 
in the mask decoder (comprising a transformer decoder and a segmentation head) di-
rectly in our initial stage. Unlike SAM's ambiguity prediction, SAM-RT's decoder pre-
dicts ݇  semantic masks ܵ̂௟ ∈ ℝ௛×௪×௞  with ܵ̂ = argmaxௗୀିଵ(Softmax(ܵ̂௟)ௗୀିଵ) , 
where ܵ̂ is the predicted segmentation map. The Softmax and argmax operations are 
performed on the channel (last) dimension. We utilize bilinear upsampling to align ܵ̂ 
with the original input size. 

2.2 Eliciting expert knowledge in CTV contouring 

In this section, our goal is to enhance the CTV segmentation task ஼࣮  performance in 
domain ࣞ஼  by leveraging the prior knowledge from the pre-trained SAM-RT's image 
encoder ℱீ  for GTVs and OARs segmentation. We apply the knowledge learned in ℱீ  
to enhance the decision function ℱ஼  for CTV contouring, effectively transferring ana-
tomical knowledge from ℱீ  to ℱ஼  (i.e., ℱீ → ℱ஼). 
 
Sequential LoRA. To ensure knowledge retention during the fine-tuning of SAM-RT, 
we have modified LoRA into Sequential LoRA (SeqLoRA). For fine-tuning SAM-RT 
from ࣮ீ  to ஼࣮  (ℱீ → ℱ஼), we freeze ViT-H parameters as in Section 2.1 and use Se-
qLoRA on the ܳ and ܸ layers. SeqLoRA enables the efficient adaptation of transformer 
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blocks for the CTV task using low-rank matrices, while preserving the anatomical 
knowledge acquired in the initial training phase. In the initial fine-tuning stage, we fine-
tuned ܳ and ܸ projections as ܳᇱ = ܹܺொ + ଵܣܺ

ொܤଵ
ொ   and ܸᇱ = ܹܺ௏ + ଵܣܺ

௏ܤଵ
௏ , using 

encoded token sequence ܺ, original weight matrices ܹொ, ܹ௏ , and low-rank matrices 
ଵܣ

ொ, ଵܤ
ொ, ଵܣ

௏, ଵܤ
௏  with ranks ݎଵ

ொ, ݎଵ
௏  for ࣮ீ . For the CTV contouring task, SeqLoRA fine-

tuning ℱ஼  involves updating ܳᇱᇱ  and ܸᇱᇱ  as follows: ܳᇱᇱ = ܹܺொ + ߙ ∙ ଵܣܺ
ொܤଵ

ொ + ߚ ∙
ଶܣܺ

ொܤଶ
ொ  and ܸᇱᇱ = ܹܺ௏ + ߙ ∙ ଵܣܺ

௏ܤଵ
௏ + ߚ ∙ ଶܣܺ

௏ܤଶ
௏, with new matrices ܣଶ

ொ, ଶܤ
ொ, ଶܣ

௏, ଶܤ
௏  

(ranks ݎଶ
ொ ଶݎ ,

௏) introduced and ܣଵ
ொ, ଵܤ

ொ, ଵܣ
௏, ଵܤ

௏  frozen. ߙ and ߚ, as learnable parameters, 
modulate the pre-trained ℱீ  influence on ℱ஼ . 
 
Unified Prompt-Visual Encoder. Let ܫ஼ ∈ ℝு×ௐ×஼  be the original CT image from 
ܵ஼ , ܳ௡ = ,ଵ݌} ⋯ , ௜݌ ௡} where each݌ ∈ ℝଶ  (݅ = 1, … , ݊  ) is a point with coordinates 
,௜ݔ) ܤ ,(௜ݕ = ,௟݌} ,௟݌ ௥} with݌ ௥݌ ∈ ℝଶ represent the top-left and bottom-right coordi-
nates of the bounding box, and ܯ ∈ ℝு×ௐ×஼  denotes the mask prompt, we introduce a 
prompt encoder ܧ௣ to fuse and encode various prompts into a high-dimensional unified 
prompt-visual representation ௣݂ = ,஼ܫ)௣ܧ ܳ௡, ,ܤ  The ablation study and the prompt .(ܯ
generation are detailed in the supplementary. For the mask decoder, we utilize the same 
training strategy mentioned in Section 2.1. In our work, the SAM-RT was fine-tuned in 
each phase by minimizing the 2D Dice loss function [21], ܮ஽ூ஼ா(ܵ̂௟,  which ,((ܵ)ܦ
aligns the SAM-RT output with the ground-truth resolution via a downsampling oper-
ation ܦ. During the inference phase, SAM-RT utilizes these prompts in conjunction 
with CT images to generate predictions based on the learned parameters. 
 
Gate-Regulated Prompt Adjustment. To direct unified prompt-visual representa-
tions, ௣݂  towards the relevant blocks during ℱீ → ℱ஼ , we propose Gate-Regulated 
Prompt Adjustment (GaRPA) strategy. As shown in Fig. 1, GaRPA enables SAM-RT 
to determine optimal weights for inserting ௣݂, which can be formulated as:  

 ூ݂
௟ାଵ = ݃௟ ⋅ ௣݂ + ை݂

௟  (1) 

where ݃௟ represents learnable gates at each layer, adjusting the balance between ௣݂ 
and previous block outputs ை݂

௟ for the next block input ூ݂
௟ାଵ. The GaRPA strategy en-

hances the adaptability of ݃௟ in both the image encoder and mask decoder, addressing 
the inefficiencies and weak interactions in traditional prompt methods, allowing SAM-
RT to focus on CTV areas more precisely. 

 
Prompt-Visual Cross Merging Attention. Prompt-Visual Cross Merging Attention 
(ProViCMA) selects features with the highest mutual response between prompt and 
image features, using cross-modal attention with unified prompt-visual representation 

௣݂ and image embedding ௩݂ as inputs to obtain prompt-to-semantic feature ௣݂௩ and the 
semantic-to-prompt feature ௩݂௣: 

 ௫݂௬ = ௫݂ ⊗ ௫௬൫ܧ ௬݂ ⊗ Sigmoid(MLP( ௫݂))൯, for (ݔ, (ݕ ∈ ,݌)} ,(ݒ ,ݒ)  (2) {(݌
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where ௣݂௩ and ௩݂௣ represent the cross-attention features derived from the features ௣݂ 
to ௩݂ and vice versa, via MLPs. Interactive weights derived from the Sigmoid function 
are element-wise multiplied with their opposite features to identify those with the high-
est response. These features are refined through an Adaptive Information Refinement 
(AIR) layer, ܧ௣௩  and ܧ௩௣, using convolutional techniques to enhance relevant infor-
mation and filter out redundancies based on prompts. The output of ܧ௣௩ and ܧ௩௣ are 
then multiplied with ௣݂ and ௩݂ respectively, to obtain ௣݂௩ and ௩݂௣. The final cross-modal 
attention output ௗ݂௨௢ = ௣݂௩ + ௩݂௣ contains effective interaction features. 

3 Experiment 

3.1 Experimental Setup 

Datasets. The clinical ܵ஼  and ܵ஼
ி datasets are collected from Sun Yat-sen University 

Cancer Center (Ethics Approval Number: B2022-525-01), comprising CT scans of 121 
distinct patients. The data was also submitted to the public scientific research data stor-
age platform (www.researchdata.org.cn) with an approval number RDDA2021001956. 
Physicians annotated the NPC CTV for ܵ஼  and both the NPC GTV and 20 OARs for 
ܵ஼

ி in each CT scan. To efficiently utilize prior-knowledge from relevant datasets, we 
collected another two public datasets: (1) SegRap2023 [19] ܵீ  includes CT and CECT 
scans for 2 GTVs and 45 OARs segmentation involving 120 NPC patients; (2) HaN-
Seg [20] ܵை  includes CT and T1-weighted MR scans for 30 OARs segmentation in-
volving 42 patients with HaN-related cancer. We randomly split ܵ஼  into training and 
test datasets. The training dataset includes ܵீ , ܵை , ܵ஼

ி, and 100 patients from ܵ஼  (de-
noted as ܵ஼

௧௥), while the test dataset comprises 21 patients from ܵ஼  (denoted as ܵ஼
௧௘). 

 
Implementation Details. 3D medical images from ܵ஼ , ܵ஼

ி, ܵீ , and ܵை  are resampled to 
a resolution of 512ଷ with a voxel size of 1.0×1.0×3.0 mmଷ. The data is standardized 
by extracting axial slices, retaining those with label pixel sums > 50, and applying min–
max normalization, adapting SAM for its original 2D-only capability. LoRA and Se-
qLoRA's rank is optimized to 4 for efficiency (supplementary). The initial learning rate 
௟௥ܫ  is set to 0.005, with a warmup period ௉ܹ of 250 and a maximum of 10,000 iterations 
[22]. For the AdamW optimizer [23], ߚଵ, ߚଶ, and weight decay are set to 0.9, 0.999, and 
0.1, for 500 epochs. The network is implemented using PyTorch [24] and MONAI [25], 
running on two NVIDIA RTX A6000 GPUs with 48GB memory. 

 
Performance Metrics. Evaluation metrics include Dice score (DSC), averaged surface 
distance (ASD), and Hausdorff distance (HSD) from MONAI1, with the Wilcoxon 
signed-rank test with no corrections (e.g., Bonferroni) for performance comparison. 

 
1  Medical Open Network for Artificial Intelligence (MONAI). https://monai.io/ 
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3.2 Ablation Study 

Reliance of CTV on GTV and OAR. We first fine-tune SAM-RT directly on ܵ஼
௧௥ (Fig. 

2 (a)) without any anatomical knowledge incorporation. Then, we pre-trained SAM-RT 
with different combinations of ܵ஼

ி, ܵீ , ܵை and fine-tuned it on ܵ஼
௧௥. Table 1 shows that 

fine-tuning SAM-RT initially on ܵ஼
ி+ܵீ+ܵை and sequentially on ܵ஼

௧௥ yielded the high-
est accuracy in CTV contouring (Fig. 2 (b)). As shown in Fig. 2 (b), the attention map 
is more focused within the CTV area than in Fig. 2 (a). Table 1 reveals that leveraging 
multi-center and multi-modality prior knowledge (ܵ஼

ி, ܵீ , ܵை) notably enhances CTV 
contouring, outperforming the traditional implicit knowledge guidance strategy (SAM-
RT*+LoRA) that relies solely on GTV and OAR information from the same dataset ܵ஼ . 

Table 1. The results confirm that the utilization of anatomical prior knowledge from multi da-
tasets, with knowledge-retention and effective prompt interaction strategy, enhances CTV con-
touring performance. † indicate SAM-RT outperforms other methods with p-value < 0.05. 

Methods 
Datasets DSC (%) ↑ ASD (mm) ↓ 

ܵ஼
௧௥ ܵை ܵீ ܵ஼

ி mean ± std. med. mean ± std. med. 
SAM-RT*+LoRA     87.09 ± 16.55† 86.81 5.97 ± 3.99† 6.19 

SAM-RT+LoRA 

    86.41 ± 10.82† 85.49 5.25 ± 1.67 5.14 
    87.15 ± 11.23† 86.95 4.15 ± 2.36 3.95 
    87.23 ± 12.97† 87.05 4.02 ± 1.99† 3.90 
    86.51 ± 13.04 86.97 4.91 ± 2.07† 4.35 
    88.12 ± 13.56† 87.93 3.89 ± 2.15† 3.69 

SAM-RT+SeqLoRA     88.75 ± 11.70 88.53 3.78 ± 2.05 3.57 
SAM-RT+SeqLoRA+GaRPA     89.12 ± 10.67† 88.71 3.04 ± 1.21† 2.91 
SAM-RT+SeqLoRA+GaRPA+ProViCMA     91.05 ± 13.54 90.65 2.19 ± 1.47 1.85 

* Implicit GTV and OAR Guidance for CTV Contouring: Network trained to predict GTV, CTV and OAR. 

 
Fig. 2. Comparing attention maps from different ablation networks, where red indicates high 
attention, blue indicates low attention. Blue arrows show improved CTV delineation with prior 
multi-center, multi-modality knowledge. Yellow arrows signify enhanced CTV delineation 
through expert knowledge elicitation with deep prompt interactions. 

Eliciting expert knowledge in CTV contouring. Table 1 shows that our proposed 
SAM-RT (Fig. 2 (e)), comprising SeqLoRA, GaRPA, and ProViCMA, demonstrates 
best performance. As shown in Fig. 2, our SAM-RT framework (Fig. 2 (e)), through 
knowledge-retention and effective prompt interaction strategy, enhances CTV attention 
while reducing focus on OAR regions, mirroring clinical efforts to minimize radiation 
toxicity. All ablation networks use the same prompts ( ଵܳ଴, ,ܤ  isolating performance ,(ܯ
differences to learned knowledge, not variations in prompts. 
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3.3 Comparison to the State-of-the-Art (SOTA) Approaches 

Compared with other methods, the CTV contour predicted by SAM-RT are the most 
accurate (as shown in Fig. 3). Table 2 shows that SAM-RT achieves the best DSC/ASD/ 
HSD of 91.05%/2.19mm/15.57mm. Different from the traditional learning strategy that 
treats CTV contouring as an isolated task, SAM-RT bridges the gap of ℱௌ → ℱீ → ℱ஼  
under a unified framework, surpassing foundational models (i.e., SAM [13], SAMed 
[15], SAM-Med2D [16], SAM-Med3D [17]), as well as conventional methods guided 
by explicit and implicit GTV (i.e., UNetGTV [26], DDNN [27]). The phenomenon is due 
to the 2D SAM model's superior feature extraction capability, pre-trained on the SA-
1B dataset [13], and SAM-RT's efficient prompt interaction with strategies for acquir-
ing anatomical-prior knowledge, enhancing SAM customization. The training details 
of SOTA models can refer to supplementary. The performance of SAM-RT in Tables 
1 and 2 was not uniformly statistically significant, attributable to inconsistencies in data 
acquisition and variations in CTV delineation by different oncologists. 

Table 2. Quantitative comparison of CTV contouring performance. Our proposed SAM-RT 
achieved the best performance, where † indicate SAM-RT outperforms other methods with p-
value < 0.05. 

Methods 
DSC (%) ↑ ASD (mm) ↓ HSD (mm) ↓ 

mean ± std. med. mean ± std. med. mean ± std. med. 
nnUNet [28] 75.63 ± 11.45† 76.98 7.12 ± 3.05† 7.10 32.77 ± 17.41† 31.05 
UNETR [29] 78.63 ± 12.05† 77.94 6.05 ± 3.64† 5.91 27.11 ± 11.89 26.16 
UNetGTV** [26] 79.98 ± 13.12† 78.79 5.62 ± 2.74 5.49 26.82 ± 15.65† 24.87 
DDNN*** [27] 80.21 ± 11.28 79.15 5.59 ± 3.55† 5.68 21.77 ± 12.19† 19.64 
SI-Net [30] 82.49 ± 15.97† 81.70 5.06 ± 2.41† 5.20 20.14 ± 13.04† 18.59 
SAM [13] 61.59 ± 20.58† 59.66 9.12 ± 5.84† 9.55 58.64 ± 20.18 54.20 
SAMed [15] 86.59 ± 10.05 85.97 3.02 ± 1.89 2.91 16.33 ± 11.25 15.11 
SAM-Med2D [16] 85.77 ± 11.32† 85.02 4.69 ± 2.31 4.59 18.51 ± 12.65† 18.02 
SAM-Med3D [17] 87.59 ± 12.61† 87.05 4.35 ± 2.11† 4.23 16.24 ± 15.87† 16.55 
SAM-RT 91.05 ± 13.54 90.65 2.19 ± 1.47 1.85 15.57 ± 10.38 14.90 

**   Explicit GTV Guidance for CTV Contouring: GTV mask combined with CT images as input.  
*** Implicit GTV Guidance for CTV Contouring: Network trained to predict both GTV and CTV. 
 

 

Fig. 3. Qualitative analysis of various CTV contouring methods. Limited anatomical understand-
ing in networks can degrade CTV delineation (blue arrows). Our SAM-RT, encompassing ana-
tomical prior knowledge with enhanced prompt interactions, demonstrates superior performance. 



 SAM-RT for Unified Prompt-Visual Interactive Segmentation of CTV in CT 9 

4 Conclusion 

In this paper, we propose SAM-RT, the first LVM designed for CTV contouring. To 
improve the accuracy for CTV contouring, we incorporated the naturally existing prior 
knowledge of GTV and OAR across multi-center and multi-modality datasets. For ef-
ficient CTV task adaptation, we fine-tune SAM-RT with SeqLoRA in a knowledge-
retention manner. We further proposed ProViCMA and GaRPA for dense prompt in-
teraction and efficient CTV task adaptation. SAM-RT employs an information-query-
ing method for its training, integrating key prior knowledge including the dependency 
of CTV on GTV and OAR, as well as leveraging expert insights for accurate CTV 
delineation. Our future research includes enhancing 3D SAM-RT development to cap-
ture structural details and integrating medical domain-specific language understanding. 
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