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Abstract. Tubular structures with tree topology such as blood vessels,
lung airways, and more are abundant in human anatomy. Tracking these
structures with correct topology is crucial for many downstream tasks
that help in early detection of conditions such as vascular and pulmonary
diseases. Current methods for centerline tracking suffer from predicting
topologically incorrect centerlines and complex model pipelines. To miti-
gate these issues we propose Trexplorer, a recurrent DETR based model
that tracks topologically correct centerlines of tubular tree objects in 3D
volumes using a simple model pipeline. We demonstrate the model’s per-
formance on a publicly available synthetic vessel centerline dataset and
show that our model outperforms the state-of-the-art on centerline topol-
ogy and graph-related metrics, and performs well on detection metrics.
The code is available at https://github.com/RomStriker/Trexplorer.
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1 Introduction

Tubular structures with tree topologies are ubiquitous in human anatomy and
can be found in the vascular system (arteries, veins, and capillaries), lung air-
ways, renal tubules, and more. These structures are associated with many dis-
ease groups such as cardiovascular, pulmonary, and ophthalmological diseases,
and tracking them in medical images aids early diagnosis and treatment plan-
ning [13,3]. Producing an accurate topology of the tracked structure is critical
for downstream tasks such as hemodynamics and blood flow modeling [12], inter-
ventional/preoperative planning [5], vascular morphometry [7] and assessment
of vascular diseases such as atherosclerosis and stenosis [4]. There are many ways
of representing tree structures but a centerline graph is generally preferred as
it provides a concise and semantically rich representation. Tools capable of gen-
erating topologically correct centerlines are, therefore, of great interest to the
medical community.

Manual extraction of these centerlines is too time-consuming, and model-
based methods [23,24] suffer from poor generalizability and performance. Deep
learning-based approaches have recently seen increased popularity and success.
One common approach is to post-process a predicted semantic segmentation
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mask using thinning and skeletonization algorithms [19,2] to produce the center-
lines. Segmentation models generally aggregate image features locally to handle
3D medical images such as CT and MRI scans. Due to local aggregation, the
long-range dependencies of these trees are difficult to capture, leading to dis-
connectivity issues in the segmentation mask. Obtaining centerlines from such
segmentation masks could, therefore, result in incorrect topology, as a fully con-
nected tree cannot be guaranteed. Some segmentation models [6,17] utilize topol-
ogy information by using topology-aware losses or graph priors. This leads to
better connectivity but does not ensure a tree topology. CorSegRec [15] employs
a complex three-stage pipeline to join the disconnected segments to the closest
largest connected component using a regularized walk algorithm. However, it can
make incorrect connections, especially when dealing with multiple disconnected
components or more complex trees.

Another set of models iteratively tracks the centerline by leveraging the fact
that the entire tree can be reached from its root. This procedure ensures that
the resulting tree has the correct topology. One deep reinforcement learning
(RL) based method [21] trains an agent to find centerline points, one action at a
time. However, it cannot deal with bifurcations and does not predict important
information such as the radius. Subsequent RL models [22,8] mitigate these
problems by utilizing an additional detector model. However, the first approach
struggles to find termination points, while the second requires specific techniques
to prevent backtracking and the repetitive tracing of identical branches, resulting
in a more complex model pipeline.

Centerline tracking can be framed as a combination of an object detection
problem where we predict centerline points as objects and an edge prediction
problem where we predict edges between all possible point pairs. Recently, Re-
lationformer [16] and Vesselformer [14] have utilized this framework to perform
simultaneous prediction of vertices and edges of a centerline graph in a 3D vol-
ume. These models are based on DETR [1], an end-to-end transformer [20] based
object detector, and utilize object queries to detect centerline points. In contrast
to iterative models, these models have a simple pipeline and utilize object queries
to detect multiple branches simultaneously. However, they do not enforce the cor-
rect topology, leading to disconnected centerline components. Furthermore, for
a complex tree with tortuous morphology, a large number of object queries are
required to detect all the centerline points, significantly increasing model com-
plexity. Lastly, Relationformer can only perform centerline detection on a small
patch of the full volume. Vesselformer does the same but glues the output graph
patches of the full volume together using custom heuristics in post-processing,
which may introduce further topology errors.

Inspired by TrackFormer [10], a video multi-object tracker, we present Tr-
explorer, a novel recurrent DETR model with a simple pipeline that tracks the
centerline graph of a tree structure in a complete volume, while also attributing
important information like radius and class for each point of the centerline. In
contrast to many existing methods, Trexplorer is guaranteed to generate a tree
topology and does not require any post-processing steps to estimate the center-
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line tree. Trexplorer combines the simplicity of transformer-based models and
the dynamic programming approach of breaking down the centerline tracking
into simpler sub-problems of the iterative models. Given a 3D volume and the
root position of a tree in the volume, our model detects centerline points level
by level, while also taking care of any new branches that might start due to a
bifurcation. We train Trexplorer in an end-to-end fashion and use it to estimate
the full centerline tree graph.

Our contributions are summarized as follows. (1) We present a novel method
for centerline tracking, which is guaranteed to yield a tree topology without any
post-processing. (2) We successfully modify a video object tracking method to
generate tree-structured graphs in medical volumes. (3) We evaluate Trexplorer
on the publicly available synthetic vessel dataset [19] and demonstrate that it
yields state-of-the-art performance.
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Fig. 1: Trexplorer architecture unrolled over four steps. Starting and bifurcation
points use the same number of object queries nb. The prediction heads act as a
filter for background and end-points while allowing intermediate points through
for further tracking. For a bifurcation point, nb copies of the object query are
created for tracking new branches.

2 Method

Our goal is to estimate a centerline tree. A tree is formally a graph (V,E) with
nodes V and edges E. In our context, each node v ∈ V is a vector v = [x, r]
where x = [x, y, z] is the position of the node in our volume and r is the radius
of the vessel at that point. To estimate the tree, we are given a 3D image, such
as a CT or MRI scan, that contains the entire tree.
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The basic idea in Trexplorer is to track every branch of the tree from the
root node to the end of each branch, which means that we estimate the number
of branches as well as the sequence of nodes along each branch. In each step of
the algorithm, we estimate the next position of each branch (approximately one
voxel away) and classify each node as either an end node, an intermediate node,
or a bifurcation node. If the predicted node is an end node we stop tracking
that branch, if it is an intermediate node we continue tracking it, and, if it is
a bifurcation point, we start tracking all the branches leaving the bifurcation
point. Trexplorer is a transformer-based model designed to solve this tracking
problem in 3D volumes, see Fig. 1 for an illustration.

2.1 The Trexplorer Achitecture

The Trexplorer architecture builds on the DETR model [1] and is inspired by
the TrackFormer model [10]. The DETR model contains an encoder block that
extracts features from the input image and a decoder block that outputs object
detections in terms of class probabilities and an estimated bounding box for
each potential object. The Trexplorer architecture is a modified version of the
DETR model, which outputs class probabilities for the classes end, intermediate,
bifurcation, background, and estimates of the position of the next point and the
radius of the vessel at that point.

Given the increased challenge of attention’s quadratic complexity in a 3D
space, both the image encoder and the transformer encoder in DETR have been
replaced by a modified SwinUNETR [18] model. It utilizes windowed attention
to efficiently create rich feature representations of an input volume. These fea-
tures along with a set of object queries are used to compute cross-attention in
the DETR decoder. To further reduce the number of tokens used in the cross-
attention operation, the image features are extracted at 1

4 of the initial resolution.
Three MLPs are used as prediction heads to predict the position, radius, and
class of each object query. See supplementary material for detailed architecture
figures.

2.2 Object Queries and Bifurcations

The input object queries used in Trexplorer represent the previous state of
branches that are currently tracked. Once updated through cross-attention with
the image features, the updated object queries will represent the next state of
those branches. As only a single object query is responsible for tracking a branch,
it allows our model to predict very dense centerline trees with only a few object
queries. The decision on how these updated queries are used is contingent on the
classification head’s output. The outputs of all object queries that are classified
as intermediate points will be added as inputs to the next step. However, object
queries marked as either an end-point or background are discarded, with the key
distinction that the end-points are added to the global graph, marking where
branches stop. If an object query is classified as a bifurcation, a fixed number
nb of its copies are added to the next step’s input, each with its own learned
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positional embedding. The positional embedding corresponds to the nb possible
directions from a voxel in a 3D grid. Intuitively, it can be seen as if the bifur-
cating vessel ends, up to nb new vessels could begin from that location, each
with its own direction. The value of nb should be set to at least the maximum
expected bifurcation degree in the data to allow the model to track all new pos-
sible branches. The object queries that do not correspond to new vessels will be
classified as background in the next step and are therefore tracked for only one
step and never added to the global graph. The bifurcation object queries attend
to each other through self-attention and are penalized for tracking the same
branch in DETR’s Hungarian loss, which discourages overlapping centerlines.

2.3 Efficient Tracking Using Patches

As vessel tracking requires voxel-level image features, the number of tokens grows
exponentially with the resolution of the input volume. This is an issue even con-
sidering the linear scaling of cross-attention and windowed attention. The most
common strategy, also used in this work, is to train on patches taken from the
complete volume. While this reduces the compute requirement significantly, it
also introduces several new issues: Firstly, inference cannot simply be performed
in a naive sliding-window fashion as this would create disconnected sub-trees
in each patch, secondly, the vessel tracking in a patch does not have any infor-
mation regarding the tree topology in the surrounding patches, and finally, the
image features used as context for our object queries are now restricted to the
patch.

In Trexplorer, we define a patch as a 64x64x64 cube, and vessels are tracked
for ten steps starting from the central voxel. During inference, once tracking has
finished in a patch, new starting points are created from the endpoints of the
centerline graph of the current patch, and new patches centered around these
endpoints are created. The model then tracks the centerline in each of the new
patches independently. This ensures connectivity between patches and as the
number of steps tracked is much smaller than the actual size of the patch, the
context will always contain the previous tracked vessel. To further improve the
performance when changing patches, a past trajectory token is added to the
object queries. This token is obtained by embedding the past trajectory vector
using an MLP. The vector is a concatenation of the position and radius from the
past trajectory nodes in the previous patch. The model also uses a step token
to get information about the current step which is a linear embedding of the
current step number.

2.4 Loss Functions

Let (p, x̂, r̂) denote the predicted class probabilities, position, and radius for a
single node, whereas c is the node class and x and r denote the position of and
radius at the node if the class is not background. For the class probabilities, we
use a class-balanced multi-class focal loss [9],

FL(p, c) = −(1− wc)(1− pc)
γ log(pc), (1)
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where pc is the cth element in p, (1 − wc) is a class balancing parameter and
wc represents the frequency of class c in our training data. The total loss for
predicting (p, x̂, r̂) is

L =
wcls

Q
FL(p, c) +

I(c)

N
(wpos∥x− x̂∥1 + wrad|r − r̂|) , (2)

where Q is number of allocated queries in the step, N is number of target
points in the step, and wcls, wpos, wrad are the weighting coefficients of the
different losses and I(c) is an indicator function that takes the value 1 unless
c =background for which I(c) = 0.

After a bifurcation point, we will make multiple (Q) predictions of multiple
(N) ground truth nodes. The association between predictions and ground truth
nodes is generally unknown. To compute the loss function we follow the DETR
model’s Hungarian loss and solve an assignment problem where we minimize the
total loss of all assignments. A prediction not assigned to a ground truth node
is assumed to be background.

3 Experiments and Results

3.1 Dataset

We evaluate Trexplorer on the synthetic vessel dataset [19], which is the only
publicly available vessel centerline dataset to the best of our knowledge. The
synthetic vessel dataset contains 136 3D volumes of size (325 x 204 x 600). Each
volume contains {min : 11,max : 21,mean : 16.1} vessel trees. Each tree has
a width of {min : 1,max : 97,mean : 19.6} and the depth is {min : 34,max :
1319,mean : 438.7}. The bifurcation degree is always 2. The max radius of each
vessel tree is {min : 11,max : 21,mean : 16.1} voxels. The same training and
test splits as reported by Vesselformer [14] are used, i.e. the first 40 volumes for
training and validation, and the next 10 volumes for testing.

3.2 Experiments

Trexplorer is trained on the synthetic dataset from scratch. We train the model
for 240,000 iterations with a batch size of 8. The number of tokens allocated to
a bifurcation point nb is set to 2, while the max number of concurrently tracking
tokens mq is set to 10. The models have been implemented using the open-source
libraries Pytorch and MONAI, and are trained using 4 A100 GPUs on a single
node with mixed precision enabled.

3.3 Results

We report the same metrics as reported by Vesselformer for a fair comparison.
The reported metrics include the Street Mover Distance (SMD) which is the
graph Wasserstein distance, the relative error in % of Betti-0 (the number of
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connected components) and Betti-1 (the number of cycles), mean average pre-
cision (mAP) and mean average recall (mAR) for both nodes and edges, and
the mean absolute error for the predicted radius. We also include the results ob-
tained by Voreen [11], an open-source framework for the analysis of multi-modal
volumetric data. The results for Voreen and Vesselformer are taken from results
reported by Vesselformer’s authors.

As shown in Table 1, Trexplorer has the lowest SMD score which is a graph
similarity score, showcasing our model’s great performance on whole graph track-
ing. Both Betti-0 and Betti-1 topology errors are zero for Trexplorer, due to its
constrained topology output. Our model has lower node and edge mAP com-
pared to Vesselformer. However, Vesselformer is trained and tested on a pruned
version of the centerlines, where nodes of degree 2 with neighboring edges form-
ing angles larger than 160 degrees are removed, and the neighboring nodes are
connected. In contrast, Trexplorer is trained on dense centerlines with node spac-
ing of around 1 voxel. This results in a predicted centerline graph with many
nodes for a single volume. To be able to compute matching-based mAP and
mAR scores in a reasonable time, we prune our predicted and ground truth ves-
sel centerlines in the same manner as described above. This may result in the
pruning of true positives, leading to lower scores. Another reason for a lower
mAP is that in the synthetic dataset, some end-points of a vessel tree can be
connected or be very close to a different vessel tree, and upon reaching those
end-points, the model starts tracking this connected tree, resulting in extra false
positives.

Table 1: Comparison of Trexplorer with Vesselformer and Voreen. Some of the
results are missing for Voreen due to instability in metric computation.

Model SMD ↓ %-Betti Error ↓ Node ↑ Edge ↑ MAE ↓
(radius)Betti-0 Betti-1 mAP mAR mAP mAR

Voreen 0.03071 0.2955 0.2766 36.17 43.35 * * 1.79
Vesselformer 0.01381 0.2188 0.2054 72.32 80.11 72.19 76.24 0.52
Trexplorer 0.0075 0.0000 0.0000 60.88 77.88 59.74 82.45 0.74

We compare the outputs of Trexplorer and Vesselformer with the ground
truth centerline graph in Figure 2. The examples show that Trexplorer can pre-
dict complicated vessel trees accurately with correct topology while Vesselformer
struggles to get the topology right and even misses some branches altogether.
Vesselformer predicts sparse centerline graphs and for the sake of this compari-
son, we add extra nodes between the connected edges to make it dense.

3.4 Ablations

In this section, we ablate two components that are added to the DETR model to
help it with the recurrent flow of information, namely the past trajectory token
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Fig. 2: Visual comparison between ground truth (GT), Trexplorer (TP), and
Vesselformer (VF) centerlines using four examples patches (A, B, C, D) from
the synthetic vessel dataset.

and the step token. For the past trajectory, we change the number of previous
positions and the radius. For this ablation study, we use a patch-wise mean aver-
age precision (mAP) and bipartite matched F1-score (BP-F1), evaluated on 640
validation patches. The results are shown in Table 2. Using the past trajectory
token results in a significant performance boost as it provides the decoder with
past context and helps it determine which way to go next. Adding more past
positions, corresponding radii, and the step token leads to small improvements.

Table 2: Ablation experiments for examining the past trajectory and step token.

Index Past trajectory token Step Token BP-F1 mAPNum. Prev. Pos. Radius
1 0 % ! 0.900 0.851
2 5 % ! 0.944 0.900
3 5 % % 0.941 0.900
4 10 ! ! 0.946 0.901
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4 Conclusion

We propose a novel recurrent DETR model and demonstrate that our model
can effectively track centerline graphs with correct topology using a simple
pipeline. Trexplorer does not require post-processing and can produce a ves-
sel tree for huge volumes by processing only relevant patches. The results show
that it performs significantly better than the state-of-the-art model on the graph
and topology-related metrics while performing comparably on other detection-
based metrics. Although the results are impressive, our model has limitations
such as possible premature tracking termination and duplicate tracking. Future
works can potentially address these limitations by utilizing DETR-variants with
stronger priors and advanced tree-matching algorithms.
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