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Abstract. Three-dimensional reconstruction of soft tissues from stereo-
scopic surgical videos is crucial for enhancing various medical applica-
tions. Existing methods often struggle to generate accurate soft tissue ge-
ometries or suffer from slow network convergence. To address these chal-
lenges, we introduce SDFPlane, an innovative method for fast and precise
geometric reconstruction of surgical scenes. This approach efficiently cap-
tures scene deformation using a spatial-temporal structure encoder and
combines an SDF decoder with a color decoder to accurately model the
scene’s geometry and color. Subsequently, we synthesize color images and
depth maps with SDF-based volume rendering. Additionally, we imple-
ment an error-guided importance sampling strategy, which directs the
network’s focus towards areas that are not fully optimized during train-
ing. Comparative analysis on multiple public datasets demonstrates that
SDFPlane accelerates optimization by over 10× compared to existing
SDF-based methods while maintaining state-of-the-art rendering qual-
ity. Code is available at https://github.com/IRMVLab/SDFPlane.git
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1 Introduction

Reconstructing three-dimensional models of deformable soft tissues from stereo-
scopic endoscopic surgical videos is a critical task. High-quality 3D models sig-
nificantly enhance various downstream applications[16,12,13,8,3,14,11,23]. For
example, in medical education, having detailed surface textures and accurately
modeled soft tissue structures is crucial for simulating a virtual surgical environ-
ment. This simulation provides a realistic and safe platform for medical personnel
to gain essential skills. Additionally, high-quality tissue reconstructions offer de-
tailed geometric information about the target area, helping surgeons understand
tissue structures more effectively. This can overcome challenges associated with
limited operational fields of view, enhancing the success and safety of surgeries.

Traditional endoscopic 3D reconstruction technologies integrate SLAM for
dense or semi-dense mapping of the surgical scene[16,12,13,3,14,11,23]. Nonethe-
less, these methods often face limitations in dynamic environments or when
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dealing with topological changes in the scene, thus limiting their practical ap-
plication. Neural Radiance Fields (NeRF)[15] have emerged as a transforma-
tive approach, demonstrating impressive results in various domains, including
medical imaging[10]. EndoNeRF[18] pioneers the application of NeRF to the
reconstruction of soft tissue deformations. By leveraging both a canonical neu-
ral radiance field and a time-dependent neural displacement field, it surpasses
traditional constraints, achieving notable reconstructions of deformable tissues.
However, the training process of EndoNeRF is computationally demanding, as
rendering each pixel requires multiple network queries, leading to slow network
convergence.

In recent efforts to advance neural rendering for three-dimensional soft tis-
sue reconstruction, many NeRF-based endoscopic reconstruction methods have
been developed[21,20,1]. Among these, Lerplane[20] employs a hybrid approach
to model dynamic scenes, which speeds up optimization compared to purely
MLP-based methods. However, Lerplane’s reliance on volume rendering to de-
pict scene geometry and appearance is primarily tailored for new perspective
synthesis, not surface reconstruction[17]. As a result, Lerplane learns only a
volume density field, struggling to achieve high-quality geometric reconstruction
and thereby limiting its performance in reconstructions. While EndoSurf[21] and
LightNeus[1] have explored using signed distance function fields to describe soft
tissue geometry, EndoSurf suffers from excessively long training times, often ex-
ceeding ten hours, and LightNeus is designed for static scenes. These limitations
significantly impede their practical application in surgical settings.

To overcome these challenges, we present SDFPlane, a novel method designed
for the efficient and accurate reconstruction of deformable tissues in surgical en-
vironments. Our method integrates a spatiotemporal structure encoder, an SDF
(Signed Distance Function) decoder, and a color decoder to precisely capture
the deformation, geometry, and color of surgical scenes. The encoder employs
a multi-resolution HexPlane to capture the deformation of soft tissues across
different timeframes. The SDF decoder produces an SDF field, providing an
accurate geometric structure of the scene by identifying the surface at a zero-
level set. A regularization strategy, informed by SDF properties, ensures the
accurate learning of surfaces. The color decoder is tasked with scene color pre-
diction, complemented by SDF-based volume rendering for synthesizing color
images and depth maps. Model parameters are optimized by minimizing the dis-
crepancy between actual outcomes and those rendered. Moreover, we introduce
an error-guided importance sampling strategy. This approach directs the net-
work’s focus towards under-optimized areas during training, thereby enhancing
result quality and speeding up the optimization process. Our contributions can
be summarized as follows:

1. A novel method for deformable tissue reconstruction that offers superior
rendering quality, precise geometry reconstruction, and is 10 times faster in
training than previous SDF-based approaches.

2. An innovative error-guided importance sampling strategy to enhance opti-
mization and rendering quality. This method dynamically adjusts the sam-
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Fig. 1. (a) Illustration of our proposed high-quality and precise reconstruction method,
SDFPlane. (b) Difference between SDF-based and density-based structure.

pling probability of pixels and is not restricted by camera movement, making
it more broadly applicable.

3. We conducted extensive experiments on the EndoNeRF[18] dataset and
StereoMIS[7] dataset, demonstrating that our method surpass all previous
endoscopic reconstruction methods in both quantitative and qualitative per-
formance.

2 Method

2.1 Overview

Given a sequence of continuous video from a stereoscopic endoscope, our goal is
to reconstruct the shape and texture of deformed soft tissues with high fidelity.
Following existing NeRF-based endoscopic reconstruction algorithms[18,20,21],
we define our input as a sequence of frame data {(Ii, Di,Mi, Pi, ti)}Ti=1. Here,
Ii ∈ RH×W×3 and Di ∈ RH×W respectively denote the left RGB image and
dense depth map for the i-th frame, where H and W are the height and width.
The foreground mask Mi ∈ RH×W is utilized to filter out extraneous pixels from
surgical tools, blood, and smoke. Pi ∈ R4×4 specifies the image pose for each
frame. T signifies the total frame count, with ti = i/T normalizing each frame’s
timestamp to the range [0, 1].

Fig. 1 shows the pipeline of our method. SDFPlane is composed of three
main components: a spatiotemporal structure encoder, SDF-based differentiable
rendering, and error-guided importance sampling. Initially, error-guided impor-
tance sampling pinpoints high-priority tissue pixels to formulate corresponding
rays (Sec. 2.2). Subsequently, sampling along each ray yields points and their fea-
ture vectors, extracted via a spatiotemporal structure encoder (Sec. 2.3). These
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feature vectors, combined with encoded coordinate time information, feed into
the color and SDF decoders to determine the color and SDF values at each
sampling point (Sec. 2.4). Ultimately, the color and depth map for each chosen
ray are deduced through SDF-based differentiable rendering, culminating in the
formulation of a loss function to refine the entire model (Sec. 2.4).

2.2 Error-Guided Importance Sampling

When sampling pixels from the training dataset, the state of the deformation
points varies over time, necessitating an increased sampling frequency. Con-
versely, the sampling frequency for static points, which remain unchanged across
different timestamps, should be reduced to enhance training efficiency. Lerplane[20]
addresses this issue by preprocessing the single-view dataset to adjust the sam-
pling weights of the points. Nevertheless, the effectiveness of this method in
clinical settings warrants further investigation.

Specifically, the sampling strategy of Lerplane[20] has two main weaknesses.
Firstly, Lerplane’s sampling strategy uses a prior mask from input images to
focus learning on masked areas, but it lacks the ability to adjust based on the
model’s learning progress. Secondly, the implementation of this sampling involves
averaging all images and measuring the differences between each image and the
average to find areas with significant deformation. This approach is only suitable
for single-viewpoint datasets, as the average image loses its meaning when the
camera moves.

To overcome these challenges, we introduce an error-guided importance sam-
pling strategy, which assigns sampling weights based on each pixel’s color loss.
Specifically, before the initial training iteration, we assign a uniform sampling
probability to all pixels (excluding those occluded by the surgical tool) using an
initial value β, which is a hyperparameter. Then, in each subsequent iteration,
we record the color loss of each sampled pixel to adjust its sampling probability.
The higher the loss, the higher the likelihood of being sampled. Formally, at
iteration t, the sampling weight W t

r of the sampled pixel r can be expressed as:

W t
r =

Lt−1
r∑

r∈R Lt−1
r

(1)

where Lt−1
r represents the rendering loss of pixel/ray r from the most recent

sampling. Specifically, if ray/pixel r has been sampled in previous optimization
steps, Lt−1

r corresponds to its color rendering loss from the most recent iteration;
otherwise, if ray/pixel r has never been sampled, Lt−1

r is set to the initial value.
R denotes all pixels in the training set. Moreover, to mitigate the impact of
high loss at noise points, for the first few iterations, we uniformly sample from
areas not occluded by the mask. After this warm-up phase, we shift to using
error-guided importance sampling.

Therefore, our method can update in real-time based on previous loss data,
allowing the sampling weights to be adjusted according to the learning progress.
This enables our method to adapt and refine the sampling process throughout the
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training period, which minimizes computational resource wastage and enhances
model performance. Besides, our proposed method is not restricted by camera
movement, making it more broadly applicable.

2.3 Spatial-Temporal Structure Encoder

To process dynamic scenes more effectively, we introduce a spatio-temporal
structure encoder, leveraging a multi-resolution six-plane framework[5,2]. This
approach decomposes the 4D deformation space into six multi-resolution grid
planes, enabling the encoding of spatial points within 2D feature grids. These
planes include XY,XZ, Y Z for spatial dimensions, and XT, Y T, ZT for spa-
tiotemporal dimensions. Specifically, we project the 4D spatiotemporal coordi-
nates q = (x, y, z, t) onto these six planes at a resolution l. On each plane, a
projected point is allocated to a grid. Through bilinear interpolation B per-
formed on the features at the grid’s four vertices, we obtain the point’s feature
on that plane. Formally, this process can be expressed as:

f(q)lg = B(F l
g, πg(q)). (2)

where g ∈ G = {XY,XZ, Y Z,XT, Y T, ZT}, πg projects q onto the g’th plane.
We combine these features over the six planes using the Hadamard product[5]

to produce a final feature vector at this resolution l. Finally, the final feature
vector is obtained by concatenating feature vectors of different resolutions:

f(q) =
⋃
l

∏
g∈G

f(q)lg. (3)

2.4 SDF-Based Volume Rendering and Optimization

Color and SDF Decoder At a given time t, with the camera origin o and
ray direction r, we sample N points xi = o + dir, for i ∈ {1, . . . , N} along the
ray. From each sampled point xi, we derive feature vectors f(xi) via the spatio-
temporal structure encoder. Then the SDF decoder Φs predicts the SDF value
si and a feature vector hi, and the color decoder Φc estimates the RGB value ci:

Φs(f(xi)) → (si, hi), Φc(γ(xi), ni, hi) → ci. (4)

Here, γ(∗) signifies position encoding[15], and the surface normal ni, calculated
from the SDF gradient n = ∇xi

si, is incorporated because the proximity of
normals at adjacent sampling points generally leads to similar color outputs
from the color decoder. This approach effectively regularizes the output SDF,
ensuring consistency in the rendering process.

SDF-Based Volume Rendering Following this procedure, we acquire SDF
prediction values {s1, s2, . . . , sN} and color prediction values {c1, c2, . . . , cN} for
all sampling points along a ray. Following [9,17], depth and color are rendered
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by integrating these predicted values along the sampled rays. Specifically, SDF
values are first transformed into opacity values[17]:

αi = max(0, (ϕ(si)− ϕ(si+1))/ϕ(si)), ϕ(s) = (1 + e−s/a)−1 (5)

where a represents a trainable standard deviation. These opacity values facilitate
the rendering of each ray’s color and depth:

Ti =
i−1∏
j=1

(1− αj), Ĉ(r) =
N∑
i=1

Tiαici, D̂(r) =
N∑
i=1

Tiαidi (6)

Fig. 1(b) illustrates the theoretical differences between SDF-based and density-
based rendering approaches. SDF-based methods uniquely identify surface points
by leveraging the property sdf = 0. In contrast, density-based NeRF networks
consider that, along a sampled ray, higher density values indicate a higher proba-
bility of the point being on the object surface, lacking an accurate and consistent
metric to guide surface generation. Therefore, density-based networks often re-
sult in significant noise during 3D reconstruction.

Loss Functions The parameters of the feature plane, color decoder, and SDF
decoder are optimized by minimizing the overall loss function, which is defined
as follows:

L = λ1Lcolor + λ2Ldepth + λ3Leikonal + λ4Ltv + λ5Lsm. (7)

where {λ1, λ2, λ3, λ4, λ5} are the weighting coefficients. Lcolor and Ldepth quan-
tify the discrepancies between rendered and actual color and depth values, and
we employ color and depth optimization by RMSE loss. We incorporate the
Eikonal term[4,6] to regularize SDF values within the 3D space:

Leikonal =
∑
x∈X

(∥∇Φs(x)∥2 − 1)2. (8)

where X represents the set of sampling points on each ray. Moreover, endoscopic
soft tissue deformation reconstruction is a serious pathological problem, need-
ing stronger regularizers. Inspired by [5,2], a 2D total variation loss Ltv and a
smoothness regularizer Lsm are used, where Ltv is applied to the spatial planes,
and Lsm is utilized along the temporal dimension of the space-time planes.

3 Experiments

3.1 Datasets and Evaluation Metrics

We validated the effectiveness of our proposed method on the EndoNeRF[18]
dataset and the StereoMIS dataset[7]. EndoNeRF provides two stereo datasets
capturing simple surgical procedures from a fixed intraoperative viewpoint. The
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Fig. 2. Qualitative analysis of 2D rendering results in the EndoNeRF’s pulling
datasets[18] and StereoMIS dataset’s P2_8 sequence[7].

dataset includes depth maps corresponding to the images and masks for cover-
ing surgical tools. The StereoMIS dataset[7] consists of a series of stereo videos
depicting intraoperative surgeries. We extracted 100 frames from two videos
(P2_1 and P2_8) with a fixed viewpoint and utilized the built-in depth estima-
tion network of StereoMIS to obtain depth maps. We compared our SDFPlane
model with EndoNeRF[18], EndoSurf[21], and Lerplane[20], which are the state-
of-the-art NeRF-based methods. Following common practice, we employ PSNR,
SSIM[19], and LPIPS[22] as metrics to assess image rendering quality.

3.2 Implementation Details

We implemented our framework using PyTorch, with the multi-resolution six-
plane framework selecting resolutions of 64, 128, 256, and 512. The dimension of
feature vectors extracted at each resolution is set to 16. The SDF decoder is a tiny
MLP with one layer and 64 neurons, while the color decoder is a tiny MLP with
two layers and 64 neurons. During sampling, we set β = 0.0003 and the warm-up
rounds to 2000. We assigned λ1 = 1, λ2 = 1, λ3 = 0.001, λ4 = 0.0001, λ5 = 0.0001
to achieve the best performance of the total model. The initial learning rate is set
to 0.01, and the initial standard deviation a is set to 0.35. For all experiments,
we maintained a uniform batch size of 2048 and conducted training for 9600
epochs. All experiments were performed on a single RTX 4090 GPU.
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Fig. 3. Qualitative analysis of 3D reconstructing results in the StereoMIS dataset’s
P2_8 sequence[7] from two distinctive perspectives.

3.3 Qualitative and Quantitative Results

Table 1. Quantitative results of EndoNeRF[18] and StereoMIS[7] dataset on metrics
of PSNR, SSIM and LPIPS.

Methods ENDONERF-cutting ENDONERF-pulling StereoMIS-1 StereoMIS-2

Metrics PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ TIME

EndoNeRF 25.7634 0.8548 0.2225 27.6759 0.8945 0.1717 27.2859 0.5772 0.4440 17.8167 0.6179 0.338 ≥5h
EndoSurf 29.8103 0.8958 0.2429 31.4422 0.921 0.2251 25.956 0.5545 0.516 28.2647 0.7449 0.4265 ≥5h
LerPlane 35.1085 0.9198 0.0925 37.9586 0.9501 0.0622 31.3784 0.7933 0.1366 34.5649 0.8956 0.0696 10min

SDFPlane w/o sample 35.7176 0.928 0.0767 38.9014 0.9569 0.0524 31.6454 0.8059 0.1257 34.8484 0.9018 0.0675 -
SDFPlane(ours) 36.2011 0.9342 0.0606 39.7202 0.9601 0.0379 32.2624 0.8382 0.083 35.7656 0.9179 0.0464 34min

Table 1 presents the performance of four methods on four datasets, with
SDFPlane consistently surpassing the previous three approaches across all qual-
ity metrics. Due to the introduction of additional gradient backpropagation,
our training time is slower than Lerplane[20], but compared to the SDF-based
EndoSurf[21], our training speed has significantly improved.

Fig. 2 displays the RGB and depth images rendered by four methods on the
EndoNeRF dataset [18] and the StereoMIS dataset [7]. Fig. 3 illustrates the 3D
reconstruction visualization, offering views from two different angles for a more
thorough comparison. Notably, EndoNeRF[18] shows black holes on both sides
of the central tissue in the P2_8 dataset, highlighting areas of suboptimal re-
construction. EndoSurf[21], with a limited number of training iterations, does
not capture sufficient detail in the color map, leading to blurred local details and
depth map contours in P2_8. While Lerplane[20] provides detailed color fitting,
its depth map introduces excessive noise, causing visible ripples on the tissue
surface. In contrast, SDFPlane’s visualizations significantly outperform these
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methods. SDFPlane not only yields high-quality, detailed color images but also
produces depth maps with sharp outlines. Moreover, in 3D reconstruction, SDF-
Plane addresses Lerplane’s issue of multi-wave surfaces, achieving a smoother
overall surface reconstruction.

3.4 Ablation Study

To demonstrate the effectiveness of key components, we conducted ablation stud-
ies, and Table 1 presents the results. Retaining both the Spatial-Temporal Struc-
ture Encoder and the SDF-based neural rendering module (SDFPlane w/o sam-
ple), our method outperforms current state-of-the-art algorithms, showing the
effectiveness of the proposed key components. Additionally, integrating the error-
guided importance sampling module (SDFPlane(ours)) further boosts system
performance, showing the efficiency of our proposed pixel sampling approach.

4 Conclusion

In this paper, we introduce SDFPlane, an efficient and precise method for re-
constructing deformable tissues from endoscopic videos. Utilizing a spatiotem-
poral structure encoder based on multi-scale planar composition alongside SDF-
based volume rendering, our approach achieves higher-quality reconstructions.
Notably, our method’s speed surpasses that of existing SDF-based methods by
more than tenfold. Moreover, the error-guided importance sampling strategy we
propose significantly enhances the system’s reconstruction accuracy and con-
vergence speed. Our experimental results demonstrate that SDFPlane excels in
various intraoperative settings. We believe our work will contribute valuable
insights into deformable soft tissue reconstruction and foster advancements in
fields like surgical robotics.
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