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Abstract. Conventional medical image segmentation methods are only
based on images, implying a requirement for adequate high-quality la-
beled images. Text-guided segmentation methods have been widely re-
garded as a solution to break the performance bottleneck. In this study,
we introduce a bidirectional Medical Adaptor (MAdapter) where visual
and linguistic features extracted from pre-trained dual encoders undergo
interactive fusion. Additionally, a specialized decoder is designed to fur-
ther align the fusion representation and global textual representation.
Besides, we extend the endoscopic polyp datasets with clinical-oriented
text annotations, following the guidance of medical professionals. Ex-
tensive experiments conducted on both the extended endoscopic polyp
dataset and additional lung infection datasets demonstrate the supe-
riority of our method. The code and text annotation are available at
https://github.com/XShadow22/MAdapter.
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1 Introduction

Computer-aided diagnosis (CAD) has become integral to medical studies, with
semantic segmentation serving as a fundamental process. Existing segmentation
methods, whether based on Unet [1] or transformer [2] architectures, are designed
for single-modality, thus imposing greater demands on sufficient high-quality
labeled images. With the development of Natural Language Processing(NLP),
researchers have recognized the potential of using language as supplementary
supervision signals to tackle the challenge of insufficient annotated images. The
clinical textual reports accompanying medical images often indicate the segmen-
tation objects as well as their quantity, size, position, and other relevant infor-
mation. This helps compensate for deficiencies in image quality and enhance
segmentation performance.

Previous representative study Clip [10] constructed a multi-modal model
based on contrastive pre-training on sufficient image-text pairs. [6,7,8] extended
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the Clip model to downstream segmentation tasks. Some studies [9] have also
validated the effectiveness of using textual information to guide medical im-
age segmentation. Lvit [3] introduced a hybrid CNN-transformer structure to
integrate textual and visual information. Lee et al. [12] utilized a text-guided
cross-position attention mechanism. However, their cross-modality fusion strat-
egy is relatively simple. Zhong et al. [4] employed GuideDecoder blocks to enable
multi-modal information fusion.

However, in previous medical image segmentation methods, textual semantic
information unidirectionally propagated into visual features, only acting as su-
pervisors during the fusion process. When there is representation bias in itself,
it will introduce textual semantic noise, leading to a decrease in segmentation
performance. Thus we consider facilitating multi-scale mutual information inter-
action to overcome this limitation. In this paper, we introduce a bidirectional
Adaptor for Medical image segmentation (MAdapter) to connect multi-layers
of uni-modal encoders. By integrating independent MAdapters to facilitate in-
teraction between encoders, we inject task-specific information into the fixed
backbone while preserving its inherent feature extraction capability. We also
propose a specialized decoder to globally align information and ultimately gen-
erate dense predictions. To validate the adaptability of our proposed method,
we extend the endoscopic polyp datasets with text annotations and conduct
experiments on the extended polyp datasets and two other datasets, totally con-
sisting of three different image modalities(endoscopic images, X-ray, and CT).
Our contributions can be summarized as follows:

– We propose a cross-modal medical image segmentation framework, using
additional text annotations to enhance segmentation performance.

– We introduce MAdapter and a specialized decoder, facilitating bidirectional
interactive fusion and alignment of multi-level visual and linguistic features.

– We extend the endoscopic polyp datasets with detailed and clinical-oriented
text annotations.

– Extensive experiments are conducted on the extended datasets and other
publicly medical image-text benchmark datasets. All results demonstrate
the superiority of our proposed method.

2 Method

In this section, we provide a detailed description of the proposed cross-modal
medical image segmentation method. We first utilize fixed vision and language
encoders to extract feature maps. A bidirectional MAdapter is proposed to make
the interaction of visual and linguistic information. Finally, dense predictions are
generated through a lightweight decoder where combined features and global tex-
tual representations are aligned. Adjusting only the parameters of the MAdapter
and decoder allows for flexible adaptability and injection of task-specific knowl-
edge. The architecture of the proposed method is illustrated in Figure 1.
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Fig. 1. The overview of our proposed method (left) and the detailed MAdapter struc-
ture (right). Built upon a fixed pre-trained vision and language model, our approach
incorporates trainable interaction modules and a decoder, which can be easily inte-
grated into existing models. The MAdapter facilitates information interactive fusion.

2.1 Image and Text Feature Extraction

For an input image I ∈ RH×W×3, we extract visual features from different
stages of the image encoder, denoted as F i

v, i ∈ {1, ...,N }, where N represents
the number of stages, which corresponds to the number of MAdapters. For an
input text prompt T ∈ RL, similar to the image encoder, we extract linguistic
features and a global textual feature from the language encoder, represented as
F i
l ∈ RL×C , i ∈ {1, ...,N } and fg. The multi-level visual and language features

from different blocks will be employed in our framework as the input of the
MAdapter and decoder for multi-modal feature interaction.

2.2 Image and Text Feature Interaction

MAdapter. The vision and language encoders are mutually invisible. However,
thanks to the carefully designed MAdapter module, our proposed framework
can propagate additional knowledge to individual modality information through
bidirectional interaction.

Given multiple visual features F i
v, i ∈ {1, ...,N } and linguistic features F i

l , i ∈
{1, ...,N }, we obtain enhanced information through MAdapter. We firstly re-
shape the visual features and project the linguistic features onto an appropriate
dimensionality using a linear layer, followed by passing them through a layer
normalization step. This process can be formalized as

F̃ i
v = Norm(Reshape(f i−1

v )) + F i
v

F̃ i
l = Norm(Linear(f i−1

l )) + F i
l

(1)

where f i−1
v , f i−1

l represent the feature map obtained from the previous MAdapter.
The interaction module we employ is based on an attention mechanism. Ini-
tially, we apply self-attention modules separately to process visual and textual
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Fig. 2. The overview of the lightweight decoder. It globally aligns textual information
and fine-grained combined features, ultimately generating segmentation predictions.

information, incorporating a residual connection to obtain enhanced features.
Subsequently, we utilize a cross-attention module. Specifically, we set the Query
(Q) to one modality’s feature and designate the Keys (K) and Values (V) to the
other modality’s feature. The process can be formalized as

F̃ i
v, F̃

i
l = FMHCA(F̃

i
v) + F̃ i

v,FMHCA(F̃
i
l ) + F̃ i

l

f i
v, f

i
l = FMHCA(F̃

i
v, F̃

i
l ),FMHCA(F̃

i
l , F̃

i
v)

(2)

where FMHCA denotes multi-head cross-attention. After the fusion of N lay-
ers of MAdapter, the final combined features containing local textual semantic
information are denoted as fv.

Decoder. To predict masks for each pixel, we employ a lightweight decoder. The
previous MAdapter performed multi-scale local information fusion and output
cross-modal fine-grained feature fv. In the decoder, the global textual represen-
tation fg is introduced to make alignment with fv. We start by incorporating
positional encoding into mixed features. Then, utilizing cross-attention modules,
we derive multi-modal features fc to capture comprehensive global contextual
information. After upsampling, convolutional layers, and activation functions σ,
fc is transformed into the final segmentation results Pre. The process can be
formalized as:

f̃v = Conv(fv)

fc = FMHCA(f̃v, fg)

f̃c = Upsample(fc)

Pre = σConv(f̃c)

(3)

3 Experiments

3.1 Datasets

We evaluate our method on two segmentation tasks. One task is the segmentation
of lung infection areas. The QaTa-COV19 dataset [13] contains 9258 chest X-ray
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images of COVID-19 cases and the MosMedData+ [14] dataset contains 2729 CT
scan slices of lung infections. Thanks to Li et al. [3] for their work in providing
text annotations.

The other task is the classical polyp segmentation task. We selected five
public polyp segmentation datasets, including CVC-ClinicDB [16], Kvasir [17],
ETIS [18], ColonDB [19], and CVC-300 [20]. Following [15], the images from
Kvasir and ClinicDB are randomly selected for training. The detailed dataset
information is listed in the supplementary material.

  One   small , elliptical, smooth      polyp      on the center .

Number Size Shape Pathological
Description 

LocationTexture

Fig. 3. A typical annotated case with different descriptors highlighted in distinct colors.

It is worth noting that the five original datasets did not come with corre-
sponding textual annotations. Therefore, we extended them under the guidance
of medical professionals. Specifically, the annotation has been organized into six
categories, including the pathological description of the lesion name, the number
of lesion areas present, the size of each lesion area, the texture of the lesions, the
shape of the lesions, and the location of each lesion area. Compared to [3], our
text annotations encompass a more wide range of pathological descriptions. This
helps provide more comprehensive semantic information. Figure 3 illustrates a
typical annotated case.

3.2 Experiment Settings

Our model is trained on a workstation with two NVIDIA RTX 3090 GPUs us-
ing the PyTorch framework. We use the AdamW as our optimizer. The initial
learning rate lr0 is set to 5e-3. We choose a batch size of 48 for the lung infection
segmentation and 24 for the polyp segmentation. All images are uniformly pre-
processed, including standard intensity normalization and cropping to 224×224.
The pre-trained vision and language models we used are ConvNeXt-Tiny [22]
and CXR-BERT [23] respectively. We use the dice and cross-entropy loss as the
loss function. Two metrics are used to evaluate the segmentation results: the
Dice and mIoU coefficients, which are widely used for segmentation tasks. The
detailed description is listed in the supplementary material.
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3.3 Results

We compare the segmentation performance of our model with UNet [1], Unet++
[5], BiomedClip [21], Lvit [3], and LGMS [4]. It is worth noting that the first two
methods are single-modal segmentation models based on images only. The latter
three methods are multi-modal models based on Clip, CNN-transformer hybrid
architecture, and fine-tuning of pre-trained models, respectively. The quantita-
tive results for lung infection region segmentation are presented in Table 1, while
those for the polyp segmentation are shown in Table 2.

Table 1. Performance comparison of different models for lung infection segmentation.

Method QaTa-COV19 MosMedData+
Dice mIoU Dice mIoU

Unet 79.31 69.93 65.81 51.75
UNet++ 79.81 71.11 71.35 58.22
BiomedClip 87.88 78.38 66.51 50.52
Lvit 83.66 75.11 74.57 61.33
LGMS 89.87 81.15 77.34 63.06
Ours 90.22 82.16 78.62 64.78

With the introduction of textual information, the segmentation performance
of the model has been significantly improved. Compared to existing multi-model
methods, we demonstrate superior performance in lung infection region segmen-
tation tasks. This improvement is attributed to the carefully designed interac-
tion module, enhancing the transferability of powerful pre-trained vision and
language models.

By extending the corresponding text annotations of the endoscopic images
dataset, the proposed model could be evaluated on the classic polyp segmenta-
tion task. The result presented in Table 2 reveals that, compared to some meth-
ods with complex structures and cumbersome parameters, our model achieves
comparable or even superior performance with an easy and versatile structural
design.

Table 2. Performance comparison of different models for polyp segmentation.

Method ClinicDB Kvasir ColonDB CVC-300 ETIS
Dice mIoU Dice mIoU Dice mIoU Dice mIoU Dice mIoU

UNet 82.49 75.61 81.82 74.61 52.33 45.58 71.35 62.84 39.82 33.52
Unet++ 79.49 72.95 82.51 74.36 48.35 41.07 70.74 62.45 40.15 34.47
BiomedClip 83.61 76.51 85.66 77.91 67.40 50.83 72.89 63.25 52.46 40.89
Lvit 89.20 82.54 90.13 82.51 73.12 57.62 84.53 71.88 63.24 53.80
LGMS 93.87 88.45 91.16 83.76 77.82 63.70 90.31 82.34 82.36 70.01
Ours 95.46 91.32 91.58 84.47 78.85 65.80 91.94 85.09 82.85 70.72
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The qualitative experimental results are illustrated in Figure 4. It can be
observed that our model achieves more accurate edge detection compared to
both single-modal and multi-modal methods.

Ground Truth Unet Clip Lvit LGM OursUnet++

Fig. 4. Qualitative results on the QaTa-COV19, the MosMedData+ and ClinicDB
datasets. The red boxes indicate that we have achieved better edge detection and
segmentation results.

3.4 Ablation Study

Effectiveness of Proposed Components: Our proposed method introduced
textual information and enhanced cross-modal information interaction and cor-
rection. We conducted ablation studies to demonstrate the effectiveness of the
text and each component. Specific details are provided in Table 3.

Table 3. Ablation studies on QaTa-COV19, MosmedData+, ClinicDB test set. ‘w/o
text’ means without text and the model uses vision decoder only. ‘MAdapter’ means
the model utilizes MAdapter for modality interaction but employs only a simple seg-
mentation head. ‘MAdapter+DC’ is our proposed method.

Method QaTa-COV19 MosMedData+ ClinicDB
Dice mIoU Dice mIoU Dice mIoU

w/o text 82.82 70.68 74.30 60.01 89.48 80.96
MAdapter 89.74 81.38 78.15 64.13 95.01 90.49
MAdapter+DC 90.22 82.16 78.62 64.78 95.46 91.32

From Table 3, taking results on QaTa-Cov19 as an example, it can be ob-
served that the Dice metric improved by 6.92% with the introduction of tex-
tual information, demonstrating the effectiveness of interaction facilitated by
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MAdapter. Additionally, with the upgrade of the decoder, the Dice metric in-
creased by 0.48%, indicating the benefits of global alignment.

Ablation Study on Different Sets of Prompts: A medical report will pro-
vide multi-faceted descriptions of pathology. To investigate the impact of dif-
ferent text granularities on segmentation results, we dissected the text prompts.
P1 represents ‘number, name’, P2 represents ‘number, size, name’, P3 represents
‘number, size, shape, name’, P4 represents ‘number, size, shape, texture, name’,
and full-text represents ‘number, size, shape, texture, name, location’. Table 4
presents the evaluation results on ClinicDB and CVC300.

Table 4. Study of different sets of text prompts.

Datasets Metrics P1 P2 P3 P4 Full-Text
ClinicDB Dice 93.85 94.62 95.25 94.71 95.46

mIoU 88.42 89.78 90.93 89.95 91.32
CVC300 Dice 90.89 91.98 91.22 91.52 91.94

mIoU 83.31 85.15 83.85 84.36 85.09

Through our experiments, we observe that richer descriptions lead to im-
provements in segmentation performance. With the full-text prompts configura-
tion, the Dice metric increased by 1.61% and 1.05%, respectively, compared to
the simplest P1 setting. However, we also note that different medical descrip-
tors do not contribute equally to the results. Descriptions related to quantity
and localization have a more significant impact. This may be due to their in-
herent objectivity and clear evaluation criteria. Conversely, descriptors such as
texture rely more on subjective judgment, which could potentially lead to the
introduction of wrong information and consequently result in negative effects.

4 Conclusion

In this paper, we introduce a novel multi-modal framework for medical image
segmentation. Specifically, we utilize a bidirectional MAdapter to facilitate inter-
action between multi-level visual and textual information extracted from fixed
dual-encoders. A flexible decoder is employed to refine the alignment between the
global textual representation and the combined representation. These individ-
ually tuned modules can be seamlessly integrated into any pre-trained model,
injecting task-specific information while retaining its inherent feature extrac-
tion capability. Furthermore, we extend the corresponding textual annotations
for the endoscopic polyp dataset. The proposed method is validated on the ex-
tended polyp dataset and several other benchmark datasets, demonstrating its
superiority and adaptability. demonstrating its superiority and adaptability.
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