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Abstract. Deep Learning (DL) has emerged as a powerful tool in neu-
roimaging research. DL models predicting brain pathologies, psycholog-
ical behaviors, and cognitive traits from neuroimaging data have the
potential to discover the neurobiological basis of these phenotypes. How-
ever, these models can be biased from information related to age, sex,
or spurious imaging artifacts encoded in the neuroimaging data. In this
study, we introduce a lightweight and easy-to-use framework called ‘Deep-
RepViz’ designed to detect such potential confounders in DL model pre-
dictions and enhance the transparency of predictive DL models. Deep-
RepViz comprises two components - an online visualization tool (avail-
able at https://deep-rep-viz.vercel.app/) and a metric called the
‘Con-score’. The tool enables researchers to visualize the final latent rep-
resentation of their DL model and qualitatively inspect it for biases.
The Con-score, or the ‘concept encoding’ score, quantifies the extent to
which potential confounders like sex or age are encoded in the final la-
tent representation and influences the model predictions. We illustrate
the rationale of the Con-score formulation using a simulation experiment.
Next, we demonstrate the utility of the DeepRepViz framework by apply-
ing it to three typical neuroimaging-based prediction tasks (n=12000).
These include (a) distinguishing chronic alcohol users from controls, (b)
classifying sex, and (c) predicting the speed of completing a cognitive
task known as ‘trail making’. In the DL model predicting chronic alcohol
users, DeepRepViz uncovers a strong influence of sex on the predictions
(Con-score=0.35). In the model predicting cognitive task performance,
DeepRepViz reveals that age plays a major role (Con-score=0.3). Thus,
the DeepRepViz framework enables neuroimaging researchers to system-
atically examine their model and identify potential biases, thereby im-
proving the transparency of predictive DL models in neuroimaging stud-
ies.

Keywords: Deep Learning · Bias · Confound detection · Shortcut learn-
ing · Concept-based XAI · Neuroimaging .

https://deep-rep-viz.vercel.app/


2 RP Rane et al.

Introduction

Deep Learning (DL) offers a promising avenue for neuroimaging research [28,
5] as it can be trained directly on high-dimensional (p >> n) neuroimaging
modalities, such as structural Magnetic Resonance Imaging (MRI), functional
Magnetic Resonance Imaging (fMRI), and Electroencephalogram (EEG). Partic-
ularly in population neuroscience research [17], DL models have been employed
to understand the relationship between the brain and various psychological phe-
notypes [25], as well as brain pathologies [25, 5, 28]. For example, DL models
are trained on brain MRI to predict the risk of developing Alzheimer’s disease
[12] or to identify subtypes in psychiatric disorders such as major depressive
disorder or substance use disorders [4, 19]. However, instead of learning the
brain-phenotype relationship relevant to the research, DL models can learn to
use demographic factors or spurious biases encoded in the neuroimaging data [3].
These extraneous factors are referred to as ‘confounders’. For example, consider
the study of Thibeau-Sutre et al. [26], where they predict the risk of developing
Alzheimer’s disease from structural MRI data. In their study, most participants
in the Alzheimer’s group were scanned using a 3 Tesla scanner, while most con-
trols were scanned using a 1.5 Tesla scanner [26]. Their DL model picked up on
this spurious association and predicted all participants scanned with a 3 Tesla
scanner as a high-risk group. Such a ‘confounded’ model that does not rely on
any potential biomarkers of Alzheimer’s disease to make its predictions would
not be clinically useful. Several neuroimaging studies routinely report similar
confounders influencing DL model predictions [10, 1, 22, 26]. Therefore, there
is a pressing need in this field for a framework to detect potential confounders
early in its life cycle of predictive DL models transparent.

In the field of neuroimaging, it is typical for researchers to select a set of
2 to 5 variables as potential confounders [10]. These commonly include age,
sex, intracranial brain volume, educational level, and socio-economic status of
the participants [10]. The variables are then controlled using confound control
methods such as regressing out the confounder [23, 11], or counterbalancing the
data [21, 20] to prevent them from influencing the model predictions. However,
this practice may pose certain risks. Additional confounders may arise from the
specific research question [18] or biases induced by the data sampling and im-
age acquisition procedures [8]. Additionally, incorrectly controlling for certain
variables that are not confounders can induce an artificial bias in the controlled
data [18]. A more prudent practice would be to evaluate the variables associ-
ated with the study for their risk of confounding a model [8, 21]. This can be
achieved by systematically predicting all the variables using the same modeling
pipeline used for the phenotype prediction, as suggested by Görgen et al. [8].
Using our ‘DeepRepViz’ framework, researchers can perform such a systematic
assessment for their DL models. The DeepRepViz framework enables this with
two components:

1. A web-based visualization tool (https://deep-rep-viz.vercel.app) to vi-
sually inspect the latent representation learned by the DL model in its final

https://deep-rep-viz.vercel.app


layer. The tool aids in qualitatively inspecting the model predictions against
all the variables associated with the study.

2. A metric, called concept encoding score or ‘Con-score’, to quantify how
strongly a variable is encoded in the latent representation of the DL model
and how strongly this encoding influences the model prediction.

In the next section, we will outline the theoretical basis of DeepRepViz and
the Con-score metric. In the Results section, we will demonstrate the efficacy of
the DeepRepViz framework by applying it to three neuroimaging-based brain-
phenotype prediction tasks.

Method

Consider a DL model used to predict a phenotype y from neuroimaging data X,
i.e. fmodel : X 7⇒ y. Let’s say that the DL model relies on a tertiary variable ck

(such as age or the scanner type), to make its predictions. The causal inference
literature [18] states that ck can influence the predictions ŷ either as a confounder
(X ← ck → y) or as a mediator (X → ck → y)[18]. In this study, we focus on
developing a framework that enables researchers to detect ck when it influences
the model predictions, irrespective of the direction of causality. Therefore, we
propose (a) a visualization tool that assists in the easy detection of ck and (b)
a metric, Con-score, that quantifies how strongly ck influences the predictions.

Related literature: Several metrics have been proposed in the past for
detecting biased predictions in machine learning models, especially focused on
preventing the unequal treatment of different demographic subgroups [15, 9].
They include observing the differential True Positive Rates (TPR), False Posi-
tive Rates (FPR), and prediction confidences across the different demographic
subgroups. While these methods can identify bias across subgroups, they do not
explain how different biases interact to produce the final predictions. The Deep-
RepViz framework offers a more comprehensive solution. The biases identified
by the Con-score can be visualized as concept activation vectors [13] in the la-
tent representation of the DL model. This allows researchers to visualize not
only how different biases are encoded in the final latent representation, but also
how they interact with each other and influence the final predictions ŷ. Thus,
the DeepRepViz framework not only helps detect individual sources of bias but
also enables researchers to interpret their DL model predictions as a function of
different mediating features and confounders.

Con-score derivation: From the perspective of representation learning the-
ory [2], the DL model fmodel can be divided into two stages X 7⇒nonlinear

H(l−1) 7⇒linear y. In other words, the model first transforms X into a condensed
latent representation H l−1 using a series of non-linear layers, and then the final
layer generates the predictions by linearly mapping from H(l−1) to y, as demon-
strated in Figure 1(a). Our goal is to estimate how strongly the variable ck is
influencing the model predictions ŷ. If ck is influencing the predictions ŷ, then we
would expect two things to be true: first, ck would be linearly predictable from
H l−1 (i.e., X 7⇒ H l−1 7⇒ ck exists), and second, a linear model that predicts ck
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Fig. 1. A demonstration of DeepRepViz and the Con-score metric: Figure (a)
shows a DL model that classifies chronic alcohol users from non-users using structural
MRI of the brain. Using the final latent representation of the DL model (H(l−1)), Con-
score is computed for a set of variables associated with the dataset. It is highest for
‘sex’ when classifying chronic alcohol users. Figure(b) shows the DeepRepViz tool and
how it can be used to inspect the learned representation H(l−1). When we select the
predicted label ŷ in the tool, we can see the linear decision boundary of the model in
H(l−1). This decision boundary aligns with the representation of sex in H(l−1) shown
in Figure(a). This is also reflected in the Con-score. Therefore, this implies that the
model could be using the information about the participant’s sex encoded in the MRI
data as a proxy to predict chronic alcohol users.
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(fck : H l−1 7⇒ ck), would be similar to the final linear transformation of the DL
model that predicts y (f (l−1)

model : H
l−1 7⇒ y). The Con-score combines these two

criteria:

Con (ck) = R2
ck · | cos (θcy) | (1)

Here, R2
ck is the coefficient of multiple determination [16] of the linear model

predicting ck from H l−1 (fck : H l−1 7⇒ ck). If ck is categorical, then we use
McKelvey and Zavoina’s pseudoR2 [14] instead of R2. The second term, cos(θcy),
is the cosine similarity between the linear model predicting ck and the final DL
layer generating the predictions ŷ. Here, the θcy is obtained by taking the vector
angle between the parameter of the linear model fck : H l−1 7⇒ ck and the
parameters of the DL layer performing f

(l−1)
model : H

l−1 7⇒ y. The model predicting
ck, fck , is constrained by the final DL layer f

(l−1)
model. That is, fck always has the

same number of parameters and the same activation function (or link function)
as f

(l−1)
model. The final Con-score ranges between [0, 1]. The higher the Con-score,

the higher the likelihood that the model is using the pathway H l−1 ↔ ck → y
for its prediction. A Con-score of 1 indicates that the DL model has learned all
information about ck in H l−1, and that the linear prediction of y and the linear
prediction of ck are exactly the same.

DeepRepViz visualization tool: We offer an interactive web-based tool to
inspect the latent representation of the DL model, H l−1, with several variables
associated with the prediction task. If the Con-score is high for ck, then we can
expect ck to be clustered in the representation space H l−1 [7] and aligned with
the prediction of y. Figure 1 demonstrates how the tool can be used to identify
potential confounders using an example of a predictive DL model used to diag-
nose chronic alcohol use from MRI. Currently, the tool requires the representa-
tion space to be 3-dimensional (3D) H(l−1) ∈ R3. However, the Con-score metric
generalizes to representations of any arbitrary dimension H(l−1) ∈ Rn. Thus, la-
tent representations higher than 3D can be reduced to 3D using dimensionality
reduction methods such as PCA, UMAP, or t-SNE [27] before uploading it to
the tool and compared using the Con-scores. Apart from the Con-score, the tool
also computes other complimentary metrics such as the Silhouette Coefficient to
quantify clusters of categorical variables, and correlation scores to quantify the
strength of association with continuous variables (please click on ‘other metrics’
in the tool to see the list of available metrics4).

Experiment design: We begin by testing the Con-score metric on simulated
data and assess its performance under controlled settings with different boundary
conditions. The simulated dataset contains a binary label y, a binary variable c,
and a 2-dimensional input data H = {h0, h1}. We generate eight instances of the
dataset by systematically altering the correlation between y, c, and the input
data H. In the figures, different colors represent the binary states of the label
y, while different shapes denote the binary states of the variable c. The top row
instances (numbered 1 to 4) are generated such that c can be easily predicted

4 https://deep-rep-viz.vercel.app/
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with a linear classification model from the input features H. In the bottom
row instances (5 to 8), c classification becomes relatively difficult. Moving from
instance number 1 to 4 or from 5 to 8, we incrementally change the correlation
between c and y. For instance, in instance number 1, c and y are completely
uncorrelated, while in instance 3, c and y become completely correlated.

Next, we evaluate the utility of the metric and the visualization tool on
three brain-phenotype prediction tasks using neuroimaging data. On a subsam-
ple of n = 12000 from the UK Biobank dataset [24], we conduct three exem-
plary brain-phenotype prediction tasks using a state-of-the-art DL architecture,
3D ResNet-50 [6] available at https://pytorch.org/hub/facebookresearch_
pytorchvideo_resnet/. We predict the participant’s (1) alcohol use, (2) sex,
and (3) performance at a cognitive task using the T1-weighted structural MRI
data. In the first task, we classify chronic alcohol users from non-users of alco-
hol. In the second task, we predict the sex of participants from their structural
MRI data. In the third task, we predict the time taken by the participants to
complete the ‘trail-making’ cognitive test.

Results

The results of the experiments are presented in Figure 2. The simulated dataset
experiment shows that as we systematically increase the similarity between a ter-
tiary variable and the label, the Con-score of the variable also increases propor-
tionately. Experiments on the neuroimaging dataset reveal potential confounders
and features that influence the DL model predictions in three brain-phenotype
prediction tasks.

Results on the simulated data: Figure 2 (a) shows the Con-score obtained
for the eight instances of the simulated dataset generated with different settings
of the variable c, a binary label y, and the input features H = {h0, h1}. The
Con-scores are highest in the instance when the label classification boundary
(black line) and the confound classification boundary (red line) align. In the top
row, this occurs in instance 3 and in the bottom row, this occurs in instance 6.
In these instances, c is highly correlated with the label y. The second term in the
Con-score metric, cos(θ), captures this correlation as seen in each instance’s title
in Figure 2(a). It is easier to linearly predict c in dataset instances on the top row
(numbers 1 to 4) compared to the bottom row. The R2 term of the Con-score
captures this variation, as shown in the title of each instance in Figure 2(a).
This is evident when we compare the R2 of instance 3 with 6 or instance 1 with
8. In summary, the Con-scores are highest in the dataset instances where the
correlation between c and y is high and c is encoded in the exposure H. For all
other cases, the Con-score drops down proportionately.

Results on neuroimaging data: Figure 2 (b) shows the results obtained
for the three brain-phenotype prediction tasks. For all the tasks, the Con-score
is computed for eight variables from the UK Biobank dataset [24] as listed in the
figure legend. When classifying high alcohol users, the DL model only achieves
pseudo-R2 = 2.6% and the Con-score is highest for the sex variable (0.35). When

https://pytorch.org/hub/facebookresearch_pytorchvideo_resnet/
https://pytorch.org/hub/facebookresearch_pytorchvideo_resnet/
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Fig. 2. Results of applying Con-score metric to (a) simulated dataset and (b)
UK Biobank neuroimaging dataset: (a) shows Con-scores obtained on a simulated
binary classification task for 8 different levels of correlations between a variable c, a
binary label y, and the input features H = {h0, h1}. (b) shows the Con-scores obtained
for eight potential confounder variables (see legend) in three brain-phenotype prediction
tasks on the UK Biobank dataset.

we visualize the representation H(l−1) on DeepRepViz (refer to Figure 1), we
find that the majority of the participants predicted as high alcohol users by
the DL model are male. This reveals that the model is picking up on the sex
bias present in the data. For the cognitive performance prediction task, the DL
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model also achieves a low R2 = 6.6% and the Con-score is highest for age (0.3).
This suggests that the model tends to predict older participants as taking longer
to complete the trail-making cognitive test. Visualization on the DeepRepViz
tool also confirms that age is encoded in the latent representation and is aligned
with the model’s prediction of the label. Interestingly, hypermetropia or long-
sightedness was not mediating or confounding this task, although one can expect
that good eyesight is important for such visual cognitive tests. For sex prediction,
the Con-scores reveal that information related to the ‘total brain volume’ of
the participants is encoded in the final learned representation layer (Con-score
= 0.18) but none of the other 7 variables are encoded. Whether total brain
volume should be considered as a confounder or an explanation depends on the
research question behind predicting sex from the brain MRI data and the causal
graph [18].

Discussion and Conclusion

Confounders can pose a significant challenge when using predictive modeling
techniques such as DL in population neuroscience research. As the size of ob-
servational neuroimaging datasets continues to grow, the issue of confounders
is only going to worsen [10]. To address this challenge, we offer an easy-to-use
framework, ‘DeepRepViz’, that can be used to examine the latent representation
learned by the DL model and identify potential confounders.

Using the DeepRepViz framework in combination with predictive DL mod-
els offers several benefits. Firstly, it enables researchers to quickly and easily
compare a battery of variables associated with the study and assess their im-
pact on the model predictions [8]. Such a tool is especially useful for population
neuroscience studies since psychological phenotypes often co-occur with various
demographic, socioeconomic, and environmental factors [20]. Secondly, once con-
founders are identified, researchers can employ the DeepRepViz framework to
validate a confound control method [21]. If a confound control method is suc-
cessful, then it should reduce the Con-score of the controlled variable to zero.
Lastly, the tool not only enables easy identification of potential confounders
but also helps to develop an intuitive (qualitative) understanding of the model
predictions. Researchers can comprehend their model decisions [20] in terms of
human-understandable ‘concepts’ [13] such as sex, age, or socio-economic status.
Additionally, DeepRepViz helps to detect training errors resulting from incor-
rect model configuration or optimization procedures. Please refer to the tool
documentation for more information about these features 5.

Future work and limitations: We are developing the DeepRepViz frame-
work with the goal of making it a generic model exploration tool that contains
not only the Con-score but also a plethora of complimentary metrics. In the
future, we aim to integrate other bias detection metrics such as the TPR, FPR,
and Statistical Parity Difference, alongside the Con-score [15]. In this study,

5 https://deep-rep-viz.vercel.app/docs.html
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we validate the DeepRepViz framework on a DL model architecture with a 3D
latent representation in its final layer, on two binary labels or one continuous
label (regression). Future works should test DeepRepViz on more complex pre-
diction schemes like multi-class classification for non-neuroimaging applications
such as natural images. Future work should also test the framework on diverse
DL architectures such as DenseNet, EfficientNet, and Vision Transformers. Fi-
nally, Con-score cannot differentiate between a mediator and a confounder [18].
A high Con-score is a necessary condition for a variable to be a confounder but it
is not a sufficient condition. Nonetheless, the Con-score helps to detect the pres-
ence of a tertiary variable ck influencing the model predictions. The researchers
can combine this information with the knowledge of the structural causal graph
of the application [18], to determine if ck must be considered a confounder or
interpreted as a crucial feature.

In conclusion, we present DeepRepViz as a versatile tool for validating DL
models, opening a pathway for performing medical discovery from neuroimag-
ing data using DL. The tool is publicly available at https://deep-rep-viz.
vercel.app. Instructions on how to use the tool is available on the documenta-
tion page5. All the necessary code is made available at https://github.com/
ritterlab/DeepRepViz. This includes a tutorial notebook demonstrating how
DeepRepViz can be integrated into a predictive DL application.
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