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Abstract. Reconstruction of deformable tissues in robotic surgery from
endoscopic stereo videos holds great significance for a variety of clinical
applications. Existing methods primarily focus on enhancing inference
speed, overlooking depth distortion issues in reconstruction results, par-
ticularly in regions occluded by surgical instruments. This may lead to
misdiagnosis and surgical misguidance. In this paper, we propose an effi-
cient algorithm designed to address the reconstruction challenges arising
from depth distortion in complex scenarios. Unlike previous methods
that treat each feature plane equally in the dynamic and static field,
our framework guides the static field with the dynamic field, generat-
ing a dynamic-mask to filter features at the time level. This allows the
network to focus on more active dynamic features, reducing depth dis-
tortion. In addition, we design a module to address dynamic blurring.
Using the dynamic-mask as a guidance, we iteratively refine color values
through Gated Recurrent Units (GRU), improving the clarity of tissues
detail in the reconstructed results. Experiments on a public endoscope
dataset demonstrate that our method outperforms existing state-of-the-
art methods without compromising training time. Furthermore, our ap-
proach shows outstanding reconstruction performance in occluded re-
gions, making it a more reliable solution in medical scenarios. Code is
available: https://github.com/CUMT-IRSI/DnFPlane.git.
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1 Introduction

Reconstructing deformable tissue structures accurately and efficiently from binoc-
ular endoscopic videos is currently a popular research topic in the field of medical
image computing [19,13,20]. This technology holds the potential to advance the
development of Robot-Assisted Minimally Invasive Surgery (RAMIS), primarily
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Fig. 1. Performance from different angles at the same time.We show the results of
LerPlane (top) and DnFPlane (bottom) at the same time. Reconstruction of DnFPlane
is more reliable in occluded regions.

providing learning data for surgical robots and creating realistic virtual surgical
environments for AR/VR surgical training [18,14,4]. Furthermore, the applica-
tion of fast reconstruction techniques extends to actual surgeries, enabling the
construction of complete surgical scenes [16,11]. This allows surgeons to navigate
surgeries in a more comprehensive and precise manner, improving the safety and
success rates of surgeries.

Neural Radiance Fields (NeRF) [12] have significantly advanced the develop-
ment of 3D reconstruction in endoscopic imaging. EndoNeRF [21] is the first to
leverage the capabilities of NeRF for implicit geometric modeling of endoscopic
scenes. It introduces a dual neural field method to simulate tissue deformation
and typical density, achieving dynamic scene rendering and alleviating the im-
pact of instrument occlusion in endoscopic-assisted surgeries. Building upon this
foundation, EndoSurf [23] further employed signed distance functions to simulate
tissue surfaces, imposing explicit self-consistency constraints on the neural field,
thereby enhancing surface reconstruction quality. To address the challenges of
fast dynamic reconstruction, LerPlane [22] separately constructs dynamic and
static fields to build a four-dimensional space. This approach significantly alle-
viates computational burdens, striking a better balance between reconstruction
quality and training time.

Although the previous methods have demonstrated remarkable results in re-
construction, they still encounter challenges in the following issues: Firstly, the
obstruction of surgical instruments in soft tissues can easily result in depth dis-
tortions in the reconstruction results, thereby affecting the accuracy of the sur-
gical scene reconstruction. Secondly, during the surgical procedure, inevitable
contact between instruments and soft tissues induces deformation in the soft
tissue. This deformation causes dynamic blurring during the reconstruction pro-
cess, thereby impacting the clarity of the reconstruction.

We propose a novel method named DnFPlane (Dynamic Filter Plane), which
enables efficient and high-quality reconstruction of deformable tissues.
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Specifically, for the depth distortions problem, we design a combination of
dynamic-mask and Dynamic Features Enhancement. By generating dynamic-
mask from dynamic and static fields, we effectively filter features at time level.

Additionally, for the dynamic blurring problem, we design a combination
of dynamic-mask and Color Iterative Refinement. By using dynamic-mask to
identify more active dynamic features and guiding the color refinement process
through GRU [5], we effectively reduce dynamic blurring. Our method facilitates
more efficient utilization of feature planes during training, making higher-quality
and stable results.

Our contributions can be summarized as follows:

1. An efficient and high-quality deformable tissue reconstruction method is de-
veloped to address depth distortion issues caused by instrument occlusion,
while without compromising training time.

2. A color iterative refinement strategy based on GRU is designed to address
the issue of dynamic blurring in the reconstruction process.

3. Compared to previous methods, our DnFPlane outperforms existing state-of-
the-art methods on the public endoscope dataset. In particular, our method
demonstrates outstanding performance in tissue reconstruction of occluded
regions, providing a more reliable visual aid in medical scenarios.

2 Method

2.1 Overview

Our framework employs dynamic and static fields to reconstruct surgical scenes.
It utilizes dynamic fields to guide static fields to generate a dynamic-mask(Sec. 2.3),
allowing the network to focus on learning more active dynamic features (Sec. 2.4).
Subsequently, utilizing GRU and guided by the dynamic-mask, an iterative re-
finement is applied to color values, diminishing dynamic blurring caused by tissue
deformation (Sec. 2.5). Finally, volume rendering is employed to predict color
and depth values for each selected ray. Rendering constraints, calculated against
ground truth, are then utilized to optimize the overall framework (Sec. 2.6). Our
framework is illustrated in Fig. 2.

2.2 Preliminaries

To enhance the efficiency of training and rendering, inspired by LerPlane [22],
representing the surgical process as a 4D volume. The surgical scene can be
represented by three static fields (XY, YZ, XZ ) and three dynamic fields (XT,
YT, ZT ). We then sample the spatiotemporal points based on the direction of
the ray r(s). The coordinates are projected onto the dynamic and static fields.
After bilinear interpolation, we obtain dynamic feature planes (FXT, FYT, FZT)
and static feature planes (FXY, FYZ, FXZ). The time dimension is (N, 1 ), and
each feature plane has dimensions (N, C ), where N represents the number of
features, and C represents the number of feature channels. Then, the fused
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Fig. 2. Illustration of our proposed DnFPlane framework. FX’Y’ is a dynamic repre-
sentation about XY.

feature f can be represented by Eq. 1. f is sent to a tiny MLP Θ to predict the
color c and density σ of the points. Finally, utilizing volume rendering[16], we
obtain the predicted color Ĉ (r (s)) and predicted depth D̂ (r (s)) for rapid 4D
reconstruction of deformable tissues.

f = FXY ⊙ FYZ ⊙ FXZ ⊙ FXT ⊙ FYT ⊙ FZT (1)

where the ⊙ represents element-wise multiplication.

2.3 Dynamic-mask Generation

For the task of endoscopic reconstruction, treating dynamic and static fields
equally at the feature level provides rich scene information for reconstruction.
However, at the time level, dynamic fields are more crucial than static fields, as
they offer more depth information. Unfortunately, Lerplane treats dynamic and
static fields equally at the time level, causing depth distortion, particularly in
regions where soft tissue is occluded during surgery. Therefore, we guide static
fields with dynamic fields to emphasize the importance of dynamic features. This
process generates a dynamic-mask, filtering the features at time level to enable
the network to focus on learning more active dynamic features, thereby reducing
depth distortion.

Select Reliable Planes Observing soft tissues from multiple viewpoints in
endoscopic surgical scenes is impractical. Additionally, the presence of surgical
instruments poses challenges for the model in predicting the color and density.
In order to more accurately reconstruct challenging scenes and reduce the uncer-
tainty introduced by the depth z, we overlook the depth features in the feature
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planes, retaining only the dynamic feature planes FXT, FYT, and static fea-
ture planes FXY. This provides a reliable guide for subsequent dynamic features
enhancement.

Dynamic Threshold Generation To effectively enhance dynamic features
without changing the composition of the fused feature, it is necessary to find
the more active dynamic part in the fused feature. For this purpose, we focus on
identifying the differences between dynamic features and static features.

Specifically, we construct a dynamic representation FX’Y’ = FXT⊕FYT about
the static feature plane FXY by fusing dynamic feature planes FXT and FYT.
Then, we evaluate the difference ∆ between this dynamic representation and the
static feature plane using ∆ = FX’Y’⊖FXY. Next, we perform summation along
the channel dimension and calculate the average variation µ′ across all points for
the dynamic representation. Similarly, the average variation µ is for the static
feature plane FXY. ⊕ and ⊖ represent element-wise addition and subtraction.

Finally, according to Eq. 2, the difference between the two average variation
values serves as the threshold ε for identifying more activate dynamic features
at the time level.

µ′ =

∑n
i=0

∑c
j=0 FX′Y′ [i] [j]

n
, µ =

∑n
i=0

∑c
j=0 FXY [i] [j]
n

, ε =
µ′

α
− µ (2)

Dynamic features Index Comparing the dynamic-static difference of each
value ∆ [i] [j] with the threshold ε, the dynamic features index is generated.
When the difference surpasses ε, the index value is set to 1. Conversely, the
index value is set to 0. The dynamic features index is obtained by filtering all
features in the evaluation with ε. The dynamic features index undergoes average
pooling and max pooling to generate a dynamic-mask with the same dimension
as the time.

2.4 Dynamic Features Enhancement

Dynamic-mask is used to filter features at the time level. The more active dy-
namic feature values in the fused feature can be identified through the dynamic-
mask. Specifically, the enhanced feature which should be attended to, is obtained
by performing element-wise multiplication between the fused features and the
dynamic-mask at the time level. Furthermore, concatenating the enhanced fea-
ture with the fused feature allows for a more comprehensive representation of
the deformation information within the tissues.

2.5 Color Iterative Refinement

During the reconstruction process, regions that exhibit more deformations are
more prone to dynamic blurring. This challenge arises from deformations caused
by inherent changes in tissues or contact with surgical instruments. The difficulty
lies in determining the color values that need to be refined.
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Considering this challenge and drawing inspiration from [24,10], we use the
iterative refinement of color values in regions with significant dynamic changes in
tissues. The dynamic-mask is used to perform element-wise multiplication with
color values, generating a guidance h, while the initial color cinitial serves as the
initial value for iterative refinement. Utilizing GRU, we update the initial value
to obtain the residual of the color values ∆c. Finally, adding the residual to the
color values c′ = c+∆c to complete the iterative refinement process in regions
with obvious dynamic changes in soft tissues.

2.6 Optimization

Volume Rendering By tracing rays r (s) = o+ sφ from the camera center to
pixels in the captured image, where o is the ray origin and φ is the pixel’s viewing
direction. The predicted color Ĉ (r (s)) and predicted depth D̂ (r (s)) of pixels in
the camera-captured image can be computed through classical volume rendering
techniques [8], as illustrated in Eq. 3. wm represents the integration weight, cm
represents color, sm represents sample points, δm represents the interval between
adjacent samples.

Ĉ (r (s)) =
M∑

m=1

wmcm, D̂ (r (s)) =
M∑

m=1

wmsm,

wm = (1− exp (−σmδm)) exp

(
−

M∑
k=1

σkδk

)
, δm = sm+1 − sm. (3)

Loss In order to optimize the rendering performance, we supervise the model
not only through color loss Lcolor and depth loss Ldepth but also introduce total
variation (TV) loss [7,15] Ltv and time smoothness loss [6] Lts. This enables the
model to reconstruct deformable tissues from a limited view robustly. Addition-
ally, we incorporate histogram loss [3] Lh to train the sampling network, aiming
to enhance the rendering quality by improving the accuracy of sampling points.
The overall loss Ltotal is formulated as shown in Eq. 4.

Ltotal = Lcolor + Ldepth + λtvLtv + λtsLts + Lh (4)

3 Experiments

3.1 Dataset and Evaluation Metrics

We evaluate our proposed method on the ENDONERF [21], which consists of
cases captured using stereo cameras from a single viewpoint. These cases con-
sist of challenging scenes that involve non-rigid deformation (changes in shape
or structure) and instrument occlusion (obstruction caused by surgical instru-
ments). We employed widely recognized evaluation metrics to assess the render-
ing results. We evaluated the rendering results using well-established metrics,
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including PSNR, SSIM, and LPIPS, to measure the quality of the rendered im-
ages. Additionally, we employed the FLIP metric [1,2] to assess the consistency
of the underlying 3D scene. This quantitative analysis enabled us to evaluate
both visual fidelity and scene coherence in a comprehensive manner.

Fig. 3. Illustration of the rendered images of previous works and ours.

3.2 Implementation Details

The adjustable weight α = 3 in Eq. 2. We use GRU for 4 iterations on the
color values. For the total variation (TV) loss across all experiments, we set
λtv = 0.0001, and for the time smoothness loss, we set λts = 0.03. The Adam
optimizer [9] is employed with an initial learning rate of 0.02. A cosine annealing
schedule with a warm-up stage of 512 iterations is implemented. We train all
scenes with 9k and 32k iterations on an RTX 4090 GPU running Ubuntu 22.04.
Our DnFPlane is implemented using Python and PyTorch [17].

3.3 Qualitative and Quantitative Results

For qualitative evaluation, Fig. 3 illustrates a visual comparison of the rendered
images between our method and several SOTA methods. EndoNeRF and En-
doSurf are capable of high-fidelity reconstruction of deformable tissues, but the
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Table 1. Performance comparison on the ENDONERF. PSNR, SSIM, LPIPS, and
FLIP are employed to evaluate the result of dynamic reconstruction.

Methods ENDONERF-Cutting ENDONERF-Pulling Time
PNSR↑ SSIM↑ LPIPS↓ FLIP↓ PNSR↑ SSIM↑ LPIPS↓ FLIP↓

EndoNeRF [21] 29.001 0.929 0.078 - 27.081 0.902 0.106 - 8h
EndoSurf [23] 34.555 0.951 0.125 - 36.656 0.954 0.121 - 14h

Lerplane-9k [22] 33.762 0.901 0.113 0.088 36.287 0.936 0.084 0.068 3min
ours-9k 34.908 0.917 0.099 0.078 36.862 0.941 0.078 0.064 3min

Lerplane-32k [22] 36.538 0.933 0.065 0.067 39.725 0.960 0.046 0.049 10min
ours-32k 37.312 0.942 0.059 0.063 40.338 0.964 0.039 0.046 10min

high computational costs limit their intraoperative use. LerPlane outperforms
both of them within 10 minutes based on evaluation metrics. However, when we
change the viewpoint to a side view, the result deteriorates. As shown in Fig. 1,
the reconstruction performance of LerPlane in the z-axis suffers from severe dis-
tortion in regions where the instruments are occluded. DnFPlane addresses this
issue by employing Dynamic Features Enhancement(DFE), allowing it to per-
form well in regions occluded by instruments. On the other hand, DnFPlane
successfully recovers rendered maps with smoother shapes and richer details.

Table 2. Ablation studies on different components on the ENDONERF. Please refer
to Sec. 3.3 for explanations of different methods.

Methods ENDONERF-Cutting ENDONERF-Pulling

PNSR↑ SSIM↑ LPIPS↓ FLIP↓ PNSR↑ SSIM↑ LPIPS↓ FLIP↓

ours w/o DFE 36.863 0.935 0.063 0.066 39.892 0.961 0.044 0.049
ours w/o CIR 37.059 0.939 0.061 0.064 40.077 0.963 0.042 0.047

ours 37.312 0.942 0.059 0.063 40.338 0.964 0.039 0.046

The quantitative results are presented in Table 1. Bold and underlined num-
bers denote the best and the second best respectively. DnFPlane achieves better
visual quality at a low time cost. Note that, our work outperforms related ap-
proaches in most metrics and produces more reliable visual results. In Table 2, we
present a quantitative ablation study on DnFPlane to understand its key com-
ponents and demonstrate their effectiveness. The inclusion of the DFE module
(w/o CIR) has improved the reconstruction quality of the algorithm, resulting
in better performance across all evaluation metrics. Additionally, this module
makes a significant contribution to mitigating depth distortion. The Color Itera-
tive Refinement module (w/o DFE), on the other hand, helps refine the surface
and plays a crucial role in improving dynamic blur.
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4 Conclusion

This paper presents an efficient and high-quality deformable tissue reconstruc-
tion method. By rethinking the value of dynamic and static fields, we use dy-
namic fields to guide static fields at the time level to address depth distor-
tions at regions of instrument occlusion without compromising training time.
Additionally, we propose a color iteration refinement method based on GRU
to enhance resolution and improve dynamic blurring during the reconstruction
process. Compared to previous methods, our DnFPlane outperforms existing
state-of-the-art methods on common endoscopic datasets. We hope that DnF-
Plane will positively impact robotic surgical scene understanding.
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