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Abstract. Vestibular schwannomas (VS) are benign tumors that are
generally managed by active surveillance with MRI examination. To fur-
ther assist clinical decision-making and avoid overtreatment, an accurate
prediction of tumor growth based on longitudinal imaging is highly de-
sirable. In this paper, we introduce DeepGrowth, a deep learning method
that incorporates neural fields and recurrent neural networks for prospec-
tive tumor growth prediction. In the proposed model, each tumor is
represented as a signed distance function (SDF) conditioned on a low-
dimensional latent code. Unlike previous studies, we predict the latent
codes of the future tumor and generate the tumor shapes from it using a
multilayer perceptron (MLP). To deal with irregular time intervals, we
introduce a time-conditioned recurrent module based on a ConvLSTM
and a novel temporal encoding strategy, which enables the proposed
model to output varying tumor shapes over time. The experiments on an
in-house longitudinal VS dataset showed that the proposed model signifi-
cantly improved the performance (≥ 1.6% Dice score and ≥ 0.20 mm 95%
Hausdorff distance), in particular for top 20% tumors that grow or shrink
the most (≥ 4.6% Dice score and ≥ 0.73 mm 95% Hausdorff distance).
Our code is available at https://github.com/cyjdswx/DeepGrowth.

Keywords: Tumor growth prediction · neural fields · signed distance
function · ConvLSTM

1 Introduction

Vestibular schwannomas (VS) are intracranial tumors arising from the balance
and hearing nerves, of which approximately 40% are progressive and ultimately
become life-threatening [2]. In current clinical practice, VS are generally man-
aged by active surveillance with MRI examination and manual tumor diameter
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measurements [16,7]. Once significant growth (> 2mm difference between two
consecutive MRI scans) is detected, the tumors are treated with either radio-
therapy or surgery [16,12]. However, research shows that although 80% of VS
shows certain growth during observation, only half of them are truly progres-
sive, indicating that many patients suffer from overtreatment [12]. On the other
hand, late treatment of a larger tumor can also damage the prognosis after treat-
ment, which requires a timely clinical decision [9]. Hence, to avoid overtreatment
and sequelae associated with the treatment of large tumors, early and precise
prediction of tumor growth based on longitudinal imaging is highly desirable.

Early studies on image-driven tumor growth prediction typically utilized
biomechanical models, such as reaction-diffusion equations, to derive physio-
logical parameters related to tumor progression [11,13]. However, most of the
models require specific imaging modalities that are unfortunately not available
in clinical routine for VS. Recently, deep learning models have shown promis-
ing performance for longitudinal tumor shape modeling. Inspired by the neural
process framework, Petersen et al. proposed to learn a distribution of possi-
ble future shapes of glioma using a self-attention mechanism [19]. Instead of
generative models, Zhang et al. [26] applied a spatio-temporal ConvLSTM for
pancreatic tumor growth modeling. Elazab et al. [4] proposed a 3D GP-GAN
that utilizes multiple stacked generative adversarial networks to predict glioma
growth. Subsequently, Wang et al. [23] applied a Transformer model to longitu-
dinal CT for 4D lung cancer tumor modeling. Although promising results were
demonstrated, most models assume unified time intervals between consecutive
scans, which is unfortunately uncommon in the clinic. Moreover, future pre-
diction in high-dimensional image space has large memory requirements, which
could limit application [26], and may also introduce spatial redundancy that
potentially damage performance [10].

One way to tackle this problem is compressing the input into a low-dimensional
latent code utilizing an autoencoder and performing predictions in the latent
space [5,20]. In line with this, we propose to perform future tumor prediction with
neural field representations [17,24]. The key idea of neural fields is to represent a
function describing an image or object in the spatial or spatio-temporal domain
as a neural network with trainable weights [25]. The neural network can be con-
ditioned on latent codes to represent a distribution of objects. Recently, Agro
et al. [1] successfully predicted future occupancy maps using spatio-temporal
neural fields. However, the method requires sufficient frames over time, while
longitudinal medical imaging usually contains only few measurements.

To address these limitations, we propose DeepGrowth, a model that incor-
porates neural fields and recurrent neural networks for tumor growth predic-
tion. Specifically, DeepGrowth encodes prior images and tumor masks into la-
tent codes and parameterizes the tumor as a signed distance function (SDF). To
deal with irregular time intervals between scans, we apply a time-conditioned
recurrent module to predict the latent code, on which the reconstruction of the
future tumor shape is conditioned. The main contributions of this work are: (1)
In contrast to previous studies that perform tumor prediction directly in image
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Fig. 1. The overall architecture of DeepGrowth (N = 3). Prior scans are encoded into
latent codes, which are concatenated with temporal encoding. The MLP reconstructs
the future tumor as an SDF conditioned on the output of the ConvLSTM. Lrec is
calculated between the predictions and SDF sampled from all three tumor masks.

space, for the first time, we represent tumor shapes as neural fields and predict
the future based on learned latent codes. (2) We introduce a time-conditioned
recurrent module with a novel temporal encoding strategy that enables us to
query tumor shapes at specific time intervals. (3) The proposed model was eval-
uated on an in-house longitudinal VS dataset, showing a significantly better
performance than other models, in particular for relatively fast growing tumors.

2 Methods

Given a patient with N longitudinal images with corresponding segmentations,
denoted as Xt = {It,Mt, Dt}, t = 1, 2, ..., N , where It is the image at time t, Mt

is the corresponding tumor mask and Dt the normalized scan date ranging from
0 to 1, our goal is to find a function Φ:

Φ : {X1, X2, ..., XN−1, DN} → MN . (1)

Instead of performing prediction directly in image space, we encode Xt into a
low-dimensional latent code and predict future by a time-conditioned recurrent
module. See Fig. 1 for an overview of the model architecture when N = 3.

2.1 3D tumor shape as signed distance function

In the proposed model, each tumor is encoded into a low-dimensional latent
code, which can be used to condition a neural field for tumor shape reconstruc-
tion. More specifically, we concatenate It ∈ RD×H×W and Mt ∈ RD×H×W , and
encode them via a convolution-based encoder with a downsampling factor s. The
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latent code is denoted as zXt
∈ RC×d×h×w, where d = D/s, h = H/s, w = W/s,

and C is the feature dimension. Unlike studies that use a single vector to repre-
sent the entire object [17,24], our latent code contains d×h×w vectors, encoding
the local information in a more expressive representation [18].

To reconstruct tumor shapes from the latent code, we represent each tumor
shape using an SDF [17]. For clarity, we use ct to denote the tumor contour of
Mt, which is a closed 2D manifold embedded in 3D space. Hence, for each Mt,
the SDF of the tumor can be defined as:

SDFMt
(x) =

minu∈ct∥x− u∥2, if x inside ct
0, if x belonging to ct
−minu∈ct∥x− u∥2, if x outside ct

(2)

where x = (x, y, z) ∈ R3. Different from voxelized or meshed representations,
the SDF and therefore x is defined over the entire space. In the proposed model,
we approximate the SDF by a multilayer perceptron (MLP) f . Similar to [18,3],
we apply a local conditioning strategy, in which SDFMt

(x) is conditioned on
the local latent code zXt

(x). zXt
(x) is a vector of size C queried from the

entire latent code zXt using trilinear interpolation [18]. For each point x, we
concatenate the coordinates x with zXt(x) as the input of the MLP, which can
then be denoted as:

SDFMt
(x) ≈ fθ(x, zXt

(x)), (3)

where θ are the parameters of the MLP. Hence, each tumor contour is described
by the zero-level set of the SDF estimated by the MLP.

2.2 Time-conditioned recurrent module

Earlier studies on tumor prediction usually assume unified time intervals between
consecutive scans [23] and predict a more distant future with additional recurrent
steps [4]. However, patients frequently receive follow-up scans with irregular time
intervals. We therefore introduce a time-conditioned recurrent module, which
consists of temporal encoding and a small 3D ConvLSTM, to predict future
tumor shapes. The 3D ConvLSTM takes the input of zXt , t = 1, 2, ..., N − 1
with the study dates Dt, t = 1, 2, ..., N and predicts zXN

. To better encode
the temporal information, we apply sinusoidal functions to the time intervals
similar to positional encoding [14], which we call temporal encoding. Given the
time interval τi = Di+1 −Di, where i = 1, 2, ..., N − 1, the temporal encoding is
expressed as follows:

γ(τi) = [sin(20πτi), cos(2
0πτi), . . . , sin(2

l−1πτi), cos(2
l−1πτi)], (4)

where l is the order of the temporal encoding. To avoid overfitting, a dropout
layer is added to the temporal encoding. We then concatenate γ(τi) to all vectors
of zXi

as the input of the ConvLSTM. Given the output zXn
of the ConvLSTM,

we can obtain SDFMn of the future tumor via Eq. (3).
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Table 1. Quantitative comparison results on a vestibular schwannoma dataset using 5-
fold cross-validation. The mean and standard deviation of Dice, 95% HD, and RVD are
reported. The highest values per column are indicated in bold; † indicates a significant
difference (p < .05) compared to the proposed method.

Method #params Dice ↑ 95% HD (mm) ↓ RVD ↓
Stable tumor 0.766± 0.143† 1.95± 2.55† 0.490± 2.99

ST-ConvLSTM [26] 0.6 M 0.758± 0.141† 2.07± 2.65† 0.611± 3.62†

3D ConvLSTM [21] 4.4 M 0.784± 0.139† 1.91± 2.50† 0.564± 3.47†

DeepGrowth (proposed) 4.9 M 0.800± 0.115 1.71± 2.23 0.521± 3.48

Table 2. Quantitative comparison results of the top 20% fastest growing or shrinking
VS using 5-fold cross-validation. The mean and standard deviation of Dice, 95% HD
and RVD are reported. The highest values per column are indicated in bold; † indicates
a significant difference (p < .05) compared to the proposed method.

Method #params Dice ↑ 95% HD (mm) ↓ RVD ↓
Stable tumor 0.697± 0.182† 4.18± 3.30† 0.413± 0.323†

ST-ConvLSTM [26] 0.6 M 0.707± 0.188† 4.28± 3.42† 0.398± 0.470

3D ConvLSTM [21] 4.4 M 0.736± 0.176† 3.87± 3.22† 0.366± 0.332

DeepGrowth (proposed) 4.9 M 0.782± 0.120 3.14± 2.22 0.321± 0.315

2.3 End-to-end network training

All components are optimized together end-to-end. For training, we randomly
sample n points from each tumor volume with 80% of the points sampled near
the contour and the rest sampled from the entire space. We apply an ℓ1 re-
construction loss that maximizes the similarity between the real SDF and the
estimations, as suggested in [17], for all N tumors:

Lrec =
1

nN

N∑
t=1

n∑
i=1

∥fθ(xi, zXt
(xi))− SDFMt

(xi)∥1, (5)

where xi are the sampled points. To stabilize the training, we apply the ℓ2 norm
to the latent codes as the regularization: Lreg = 1

N

∑N
t=1∥zXt

∥2. As a result, the
overall loss function of the proposed model is L = λrecLrec+λregLreg, where λrec
and λreg are the weights of each loss function.

3 Experiments

3.1 Dataset

To evaluate the proposed method, 131 vestibular schwannoma patients were
selected from our previous study [15,16]. Each patient in the dataset has three
consecutive contrast enhanced T1 (T1ce) scans, separated by 87 to 2157 days.
The spatial resolution of the T1ce ranges from 0.254 × 0.254 × 0.81 mm to
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1.17 × 1.17 × 1.20 mm and the in-plane resolution ranges from 256 × 192 to
640 × 520. Of all scans the tumor masks were generated using a segmentation
model developed in our previous study based on nnUNet [6,15]. We aligned
all scans of each patient by rigid registration using elastix [8]. All images were
then resampled to an isotropic resolution of 0.58 × 0.58 × 0.58 mm. To avoid
the influence of background, 64 × 64 × 64 cropping was performed around the
centroid of the tumor. The intensities of T1ce were normalized to [−1, 1] and Dt

was normalized to [0, 1] within the original range of 0 to 10 years.

3.2 Implementation details

We adapted a 3D U-Net from [18] as the encoder with two extra convolutional
blocks for downsampling. The ConvLSTM in the time-conditioned recurrent
module consists of three 32-channel layers and the MLP contains five 64-channel
layers with sine as the activation function [22]. Due to the limited dataset size
and diversity in tumor growth trends, we perform five-fold cross-validation and
report the average results of the five folds to avoid bias. We set the downsampling
factor s = 4 and temporal encoding order l = 6 for best performance (see
Section 3.4). Little difference was observed between different loss weights, which
were set to λrec = 1.0 and λreg = 0.1. The model was optimized using Adam
with an initial learning rate of 1e − 4. During inference, the tumor masks were
generated from the zero level-set of the predicted SDF and evaluated using the
Dice, 95% Hausdorff distance (95% HD), and relative volume difference (RVD).
All experiments were conducted using Python 3.10 and PyTorch 1.12.1 on a
machine equipped with Nvidia Quadro RTX 6000 and Nvidia Tesla V100 GPUs.

3.3 Future tumor shape prediction

We first evaluate the proposed model by predicting the third future tumor shape
from the first two scans and time intervals. We compare our model against three
baselines. The first baseline assumes the tumor remains stable after the second
scan, which is reasonable due to the slow growth of VS, so we simply take the
tumor mask from the second time point as a prediction, which we call "stable
tumor" in the experiments. The second and third baselines are two ConvLSTM-
based models: ST-ConvLSTM [26] and 3D ConvLSTM [21]. ST-ConVLSTM is a
smaller 2D model where we use the same architecture as described in the original
paper. 3D ConvLSTM, which contains a comparable number of parameters to the
proposed model, consists of three layers with (64, 128, 64) channels respectively.
Unlike the original papers that use the ℓ1 loss to train the model to generate
binary maps, we used a weighted sum of Dice loss and binary cross-entropy loss,
which performed better on our data, to train the baselines. Wilxocon signed
rank tests were performed between the proposed model and each baseline.

The quantitative results are listed in Table 1 with visualizations in Fig. 2.
The proposed model performed significantly better than all baselines in terms of
Dice and 95%HD. The proposed model obtained a higher RVD due to an extreme
outlier (see last row in Fig. 2). When removing this outlier, the proposed method
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ST-ConvLSTM

DeepGrowth 

(proposed)
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Fig. 2. Example results of the different models. The first two columns are the input of
the models, followed by the ground truth in the third column, and model predictions in
subsequent ones. Predicted tumors are depicted in red and the ground truths in green.
The dates are the study dates. The last row depicts a tumor that suddenly shrank after
the second scan, which was difficult to predict for all models.

Table 3. Quantitative results of top 20% growers when varying temporal encoding.

methods order Dice ↑ 95% HD (mm) ↓ RVD ↓
w/o time 0.765± 0.143 3.37± 2.49 0.341± 0.314
with time 0.774± 0.126 3.23± 2.50 0.316± 0.278

l = 4 0.773± 0.144 3.33± 2.53 0.316± 0.306
time + temporal encoding l = 6 0.782± 0.119 3.14± 2.22 0.321± 0.315

l = 8 0.773± 0.142 3.23± 2.39 0.315± 0.363

obtained an RVD of 0.218±0.248, which outperformed all baselines (0.229±0.230,
0.296± 0.304 and 0.261± 0.266, respectively).

We noticed that the stable tumor method obtained comparable quantitative
scores, which is on par with the fact that many VS grow slowly or even remain
stable. Focusing on the top 20% of tumors that grow (or shrink) the most, see
Table 2, we observe a larger gap between the proposed model and the baselines,
indicating the improved capability of modeling tumor growth.

3.4 Ablation study

To examine the impact of temporal encoding, we trained two additional models:
one without time factors at all, and one using time intervals τi directly as sug-
gested in [26]. We also compare the models using different orders l for temporal
encoding. The results of the top 20% growers are shown in Table 3. Direct use of
τi barely improved results, while temporal encoding improved the results for all
metrics. Best results were obtained for l = 6, with higher l leading to overfitting.
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Fig. 3. Querying the proposed model at different time points (increments of 180 days).
We overlaid predictions on I2 for visualization in columns 3-6. The proposed model
can output varied tumor shapes given different time intervals, while the model without
temporal encoding outputs almost the same results regardless of the time intervals.

Table 4. Quantitative results of DeepGrowth using different downsampling factors.

downsampling factor s Dice ↑ 95% HD (mm) ↓ RVD ↓
s=1 0.788± 0.127 1.87± 2.39 0.544± 3.68
s=2 0.796± 0.122 1.78± 2.40 0.577± 4.18
s=4 0.800± 0.115 1.71± 2.23 0.52± 3.48
s=8 0.784± 0.125 1.85± 2.35 0.598± 4.10

As our model allows us to query arbitrary future time points, we show pre-
dictions given different τ2 (with a step of 180 days) in Fig. 3. We can see that
the model using τi without temporal encoding outputs almost the same results
regardless of the time intervals. On the contrary, by using temporal encoding, the
proposed model can output varied tumor shapes given different time intervals,
from which we can view how tumors grow over time.

Models using high-resolution feature maps were more difficult to train, while
lower-resolution feature maps potentially degraded performance due to lowered
expressive capability [5,20]. We, therefore, varied the downsampling factors s,
see Table 4, and concluded that s = 4 resulted in the best performance.

4 Discussion and Conclusion

In this paper, we proposed DeepGrowth, a deep learning model that incorpo-
rates neural fields and recurrent neural networks for tumor growth prediction.
Unlike conventional models that predict image or segmentation masks directly in
the image space [26,4], we encode tumors into a latent space and predict future
latent codes. The future tumor shape is reconstructed as the zero-level set of an
SDF conditioned on the predicted latent code via an MLP. A comparison on a
longitudinal VS dataset showed improved performance of the proposed model,
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in particular for more challenging growing or shrinking tumors. We applied tem-
poral encoding to the study intervals, which helped the model to encode time
information and output varied tumor shapes given different time intervals. How-
ever, it remains to be investigated if tumor growth derived from our predictions
can be used to aid clinical decision making. In conclusion, we showed that neu-
ral fields hold great promise for information compression, which can facilitate
longitudinal tumor modeling.
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