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Abstract. Despite the high diagnostic accuracy of Magnetic Resonance
Imaging (MRI), using MRI as a Point-of-Care (POC) disease identifica-
tion tool poses significant accessibility challenges due to the use of high
magnetic field strength and lengthy acquisition times. We ask a sim-
ple question: Can we dynamically optimise acquired samples, at the pa-
tient level, according to an (automated) downstream decision task, while
discounting image reconstruction? We propose an ML-based framework
that learns an active sampling strategy, via reinforcement learning, at
a patient-level to directly infer disease from undersampled k-space. We
validate our approach by inferring Meniscus Tear in undersampled knee
MRI data, where we achieve diagnostic performance comparable with
ML-based diagnosis, using fully sampled k-space data. We analyse task-
specific sampling policies, showcasing the adaptability of our active sam-
pling approach. The introduced frugal sampling strategies have the po-
tential to reduce high field strength requirements that in turn strengthen
the viability of MRI-based POC disease identification and associated pre-
liminary screening tools.

Keywords: Point-of-Care Diagnosis · Active Sampling Strategy· Rein-
forcement Learning · Magnetic Resonance Imaging.

1 Introduction

Despite the proliferation of Magnetic Resonance Imaging (MRI), its role as a
Point-Of-Care (POC) diagnostic tool is muted due to poor accessibility caused
by long acquisition time and cumbersome equipment [4]. Consequently, advance-
ments have been made in assisting the diagnostic process with machine learning
methods to sample less k-space data and reduce acquisition time in turn [8].

We first illustrate how learning-based strategies can help to reduce acquisi-
tion time by considering the depiction of conventional MRI-based diagnostic pro-
cesses. In Figure 1a. an MRI scanner samples the full k-space, resulting in high-
fidelity images, which are further interpreted by professional radiologists to iden-
tify biomarkers and provide a diagnosis. Alternatively, machine-learning (ML)
based diagnostic processes can enable acquisition time savings by reconstruct-
ing a high-fidelity image from undersampled k-space (Figure 1b). Previous work
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Fig. 1. Conventional vs. ML-based Diagnostic Processes.

has focused on optimising both reconstruction [3] and k-space sampling strate-
gies [1]. To find the best k-space sampling pattern, various methods [12, 17, 18]
optimise the mask given pre-defined sample rates, resulting in population-level
masks, while reinforcement-learning-based methods [2,11] can optimise an active
sampling strategy at population or patient-level. A re-interpretation of such con-
ventional use of MRI can lead to considerable savings, which will largely enable
a low-field MRI future opening the road to POC and bedside imaging.

Considering that image reconstruction is a shared stage in both conventional
(Figure 1a) and ML-based (Figure 1b) diagnostic processes, one ponders Is the
image necessary for automated, diagnostic, inferences? One option is to perform
direct inference on undersampled k-space as shown in Figure 1c. In fact, [14]
have shown that it is possible to obtain biomarkers directly from k-space data.
However, one then immediately ponders Can AI agents learn effective k-space
sampling strategies by considering expected diagnostic performance?

A recent realisation of this concept is presented in [15]. The work formulates
the described process as a classification task with an optimised sampling strategy.
However, the sampling strategy is designed at the population-level, resulting
in the same mask for all patients. All approaches that find optimal patient-
level active sampling strategies use image reconstruction [2, 11, 20]. To the best
of our knowledge, active sampling strategies for patient-level disease inference,
from undersampled k-space, are lacking. Motivated by this, our contributions
include:

• We propose, the first, patient-level active sampling using a reinforcement
learning framework, aiming for direct disease inference from k-space.

• We test feasibility to infer Meniscus Tear presence in undersampled MRI..
• We investigate how different policies make decisions and how different start-
ing points alter behaviour.

2 MRI Undersampling Preliminaries

Instead of directly imaging the human anatomy, MRI captures the electromag-
netic activity in the body after exposure to magnetic fields and radiofrequency
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Fig. 2. Our framework for active MRI sampling for point-of-care diagnosis.

pulses, which can be measured in k-space (i.e., the frequency domain). Con-
sidering the single coil measurement, the k-space data can be represented as a
2-dimensional complex-valued matrix x ∈ Cr×c, where r is the number of rows
and c is the number of columns. The spatial image I can be obtained by applying
the inverse Fourier Transform to x, denoted as I = F−1(x). The undersampled
k-space can be therefore represented as xs = UL◦x, where UL can be viewed as a
binary mask U ∈ {0, 1}r×c with L measurements from k-space. In our work, we
exclusively consider the Cartesian mask for MRI undersampling. Consequently,
the undersampled image is denoted as Is = F−1(xs).

3 Methods

Overview: Our framework, illustrated in Figure 2, aims to reduce acquisition
time by selectively sampling the k-space according to diagnostic significance,
in a progressive fashion. The process begins with a small subset of randomly
sampled k-space with L measurements denoted as xs0 = UL◦x, resulting in a low-
quality image Is0 . Is0 is then input into a pre-trained classification network f to
generate the initial prediction y0. The extracted feature maps m0 are processed
by the Feature Operator O, producing high-level features h0 = O(m0), which are
then fed into the Active Sampler S. The policy network generates a sampling
policy pϕ(h0) parameterised by ϕ, guiding the selective sampling of diagnostically
significant lines from the k-space. These sampled lines are subsequently added
to UL. The updated undersampled k-space data at step t ∈ [0, T ] are denoted as
xst = Ut ◦ x, and are then fed back into the classification network with inverse
Fourier transform. The iterative process continues until a sampling budget T
is exhausted or user-defined reliability criteria are satisfied. During the training
stage, the predictions yt, accompanied by the ground truth diagnostic label g,
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are used as the criterion rt = r(yt, g) to supervise the S. While in inferece stage,
there is no ground truth diagnostic label g provided.
Classification Network and Image Operator: To improve stability, the
classification network is pre-trained with undersampled k-space data, ensuring
an advantageous reward for the active sampler during training. This network also
functions as the feature extractor in our setting. In the classification network, the
earlier layers tend to learn low-level features such as edges, textures, and simple
patterns, while deeper layers learn more complex and high-level features that
are useful for discriminating between different classes. Therefore, utilising the
feature maps from the model, the high-level features are selected and processed
by the feature operator as further inputs.
Active k-space Sampler with Greedy Policy: Inspired by [2, 11], the se-
quential selection of k-space can be formalised as a Partially Observable Markov
Decision Process (POMDP) [16]. Greedy Policy is used to maximise the ex-
pected return J(ϕ) of a policy pϕ parameterised by ϕ in such a POMDP. At
each step, the classification improvement can be calculated using R(rt, rt+1) =
r(yt+1, g)− r(yt, g), where the criterion r is the cross-entropy.

During inference, the agent will be sampling one-line at a time. However,
this will slow during training. Hence, the policy network is trained by sampling
several lines in parallel the rewards of which are averaged [6]. Formally, we sample
q lines at every time step, for a reward Ri,t as the reward obtained from sample
i at time step t, to obtain the following estimator:

∇ϕJ(ϕ) ≈ 1
q−1Ex

∑q
i=1

∑T−1
t=L

[
∇ϕ log pϕ (ht)

(
Ri,t − 1

q

∑q
j=1 Rj,t

)]
. (1)

Evaluation Metrics: To assess the network’s classification performance, we
employ metrics such as Recall, Area Under Curve (AUC), and Specificity.

4 Experiments

4.1 Dataset and Pre-processing

Dataset: We used single-coil k-space data and slice-level labels from the publicly
available fastMRI dataset [19] and fastMRI+ dataset [21]. Randomly selecting
1100 annotated volumes (39125 slices) from the fastMRI Knee dataset. Our
diagnostic task is to identification Meniscus Tear (MT) in each slice. Thereby,
there are 32035 train slices (11.8% with MT), 5249 validation slices (9.3% with
MT), and 1841 test slices (11.1% with MT).
Data Pre-processing: Since the k-space data have various sizes, we first use
inverse Fourier transform to the fully sampled k-space data to get the ground
truth image and crop it to size (320×320) for computation convenience. Thereby,
the fully sampled k-space data of uniform size can be obtained by applying
Fourier transform to the ground truth image. Notably, there is a severe class
imbalance regarding the MT identification task. During training the classification
network, we oversample the data to avoid overfitting on the majority class and
poor generalisation on the minority class. During training the policy network,
we undersample the data for computational expedience as [2].
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Table 1. Diagnosis Support and Data Access of Implemented Methods.

Diagnostic Support Data Used by the Model

Method
Sampling

Optimization
Patient-level
Strategy

Full k-space Diagnostic Label Undersampled k-space

Oracle ✓ ✓
Undersampled ✓ ✓

Policy Reconstruction [2] ✓ ✓ ✓ ✓ ✓
Policy Classifier(Ours) ✓ ✓ ✓ ✓

4.2 Implementation Details

We devise inference benchmarks to allow us to evaluate our approach in a fair
fashion. Two benchmarks have the access to fully sampled k-space(high-fidelity
images), and two do not optimise at the patient level the sampling strategy. The
diagnosis support and data access are shown in Table 1.
Fully Sampled (Oracle): This serves as an benchmark estimator of classifier
performance on image input obtained by fully sampled k-space data, and hence
no sampling optimisation occurs. We trained the classifier with the ground truth
image as input which is transformed from fully sampled k-space data and super-
vised by the diagnostic label using cross-entropy loss. We use as classification
backbone a ResNet-50 [5] and to address the class imbalance in the training set,
we add extra dropout layers overfitting, resulting in a total of 25.6M parameters.
Undersampled: This classifier serves as a baseline of performance when simple
inverse Fourier is used to transform the under-sampled k-space data, without any
sampling optimisation. It has the same backbone as the Oracle, and is trained
with undersampled images with various sample rates (4 to 20) and center fraction
(0 to 0.10), supervised as before.
Policy (via) Reconstruction [2]: We compare with a model that optimises
patient-level sampling strategy with image reconstruction error as rewards. No-
tably this method has access to fully sampled k-space, and hence has access to
more information during training. We pre-trained a reconstruction network us-
ing a U-Net [13] as the backbone with a first feature map size of 16 and 4 pooling
cascades, resulting in a total of 837K parameters. The reconstruction network
is trained with various sample rates (4 to 20) and center fraction (0 to 0.10)
supervised using the ℓ1 loss. We train the active sampler for reconstruction with
reconstructed images from pre-trained model as inputs, and Structural Similar-
ity Index Measure as the criterion to provide rewards, resulting in a total of
26.7M parameters. The reconstructed images obtained with the policy network
and pre-trained reconstruction model are evaluated with the Oracle, referred to
as the Policy-based Reconstruction Network (Policy Reconstruction).
Proposed Policy Classifier: For our method, a backbone similar to the Un-
dersampled is used as pre-trained classification network. The reward is driven
by the predictions of the network and its feature maps are used to train the
policy. The Feature Operator uses the last 2 layers’ feature maps as input and
the global average pooling function to achieve a (80, 512) output to feed in the
policy network. The policy network (11M parameters) uses the cross entropy
from classification network to provide rewards. It is trained with an initial sam-
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Fig. 3. Classification performance varying sample rates (horizontal axis). More metrics
are reported in the Supplementary.

ple rate of 5% with multiple center fraction and samples 64 lines to reach the
sample rate of 25% as the sampling budget. The parallel acquisition q = 8.

For all methods, we employ the Adam optimiser with a learning rate of 10−4

and a step-based scheduler with a decay gamma of 0.1 for all model training. All
classification and reconstruction models are trained for 30 epochs, and the policy
networks of the active sampler are trained for 20 epochs. Our experimental setup
uses the PyTorch framework, and all computations are conducted on NVIDIA
A100 Tensor Core GPUs. Our code4 is available.

4.3 Results

Making Diagnostic Decisions with Undersampled Data
Figure 3 compares the performance at various sample rates for three strategies
that use undersampled masks, namely the Undersampled, Policy Reconstruction
and Policy Classifier. The first randomly samples k-space lines progressively; the
other two start with a randomly initialised mask with a sample rate of 5% and
optimally decide using their respective rewards and policies (see Section 3).

Our method, the Policy Classifier, consistently outperforms the Undersam-
pled baseline across all metrics, showing that optimal sampling via the policy
network helps in identifying diagnostically relevant k-space lines. This leads to
considerable savings in data sampled (and consequently scan time). Our model
approximates well the performance of the Oracle, which has been trained on
high-fidelity data, and reaches optimal performance quickly. Taking AUC as an
example, our approach reaches an AUC of 0.780 with 7% of the sampled k-space.

Our method closely approximates the performance of the Policy Reconstruc-
tion, which we highlight has been trained with access to fully sampled k-space
and its label while our policy uses noisy reward from classifier as supervision.5

k-space Sampling Behaviour of the Policies
The results of the previous paragraph are reported over a coarse percentage of

4 https://github.com/vios-s/MRI Active Sampling
5 We observe that the Policy Reconstruction performs better than the Oracle. This
policy reconstructs an image which is given to the Oracle for classification. Some
denoising and smoothing are happening at the reconstruction which in turn acts as
a regulariser for the Oracle classifier explaining this slightly improved performance.
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Fig. 4. k-space behaviour of the two policies. The horizontal axis indicates the cumu-
lative lines acquired while sampling.The initial 16 lines are randomly sampled.

Random Sampling Mask Center Fraction = 0.00 Center Fraction = 0.01 Center Fraction = 0.05

Fig. 5. k-space preference as a function of sample rate (vertical axis downward) and
for 3 center fraction scenarios. Colorbar indicates the possibility of being sampled.

k-space lines acquired. It is worth looking into how the two different policies
behave when asking each policy to progressively make decisions on which line
to acquire in a line-by-line manner. The results of this exercise are shown in
Figure 4. The behaviour of the two methods is evidently different. Taking Recall
and AUC as examples, the Policy Classifier plateaus quickly, reaching excellent
performance with 22 sampled lines and continuing to make, small, improvements.
The Policy Reconstruction over the same interval makes sub-optimal (to classifi-
cation) decisions before it plateaus. This behaviour can be explained by the fact
that a reconstruction policy may not favour lines useful for classification. The
Policy Classifier appears to change behaviour between 19 and 21 lines acquired.
This can be attributed to a drift from how the classifier was pre-trained with
randomly sampled lines. We discuss solutions to this later.

Task-specific ‘Coarse-to-Fine’ Sampling Policy
It would be interesting to see which k-space lines are favoured by our policy
and how altering the starting point (namely different percentage of center frac-
tion which represents the amount of low-frequency k-space intentionally sampled
from the center of the k-space) modulates this behaviour. Figure 5 illustrates
the average masks provided by three policy networks. Non-optimised random
sampling mask (population-level mask) is also included as a comparison. It is
evident that non-optimised and optimised masks vary in Figure 5, indicating
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that a prefixed population-level mask would either over-acquire k-space lines for
some patients or under-acquire for others compared to the optimised patient-
level mask. Compared with the sampling policy for reconstruction in supplemen-
tary, this analysis reveals that early on the policy favours both low-frequency
and some high-frequency data. However, later on the policy favours specific
diagnostically-relevant k-space lines of high-frequency. Hence we see the policy
capturing ‘Coarse’ features such as anatomical structures or essential patterns
first and later ‘Fine’ details from the high-frequency data. When center fraction
increases, the policy samples even more high-frequency information early on.
While this might be obvious it is actually driven by low AUC performance when
forcing the model to sample more center lines from the start (the AUC drops
from 0.794 to 0.743 when the center fraction is set to 0.05, see also more metrics
in the supplementary). By forcing the model to sample redundant low-frequency
data, the policy tries to recover to identify diagnostically significant data within
the k-space.

5 Discussion

Clinical Relevance: Our method actively samples k-space data whilst simulta-
neously conducting disease inference, enabling real-time diagnosis during scan-
ning. This approach eliminates the need for sampling full k-space, thereby reduc-
ing acquisition time. In addition, our approach does not require high-fidelity fully
sampled data for policy training, which is a hard requirement of reconstruction
policies. We believe this has the potential to further accelerate the development
of low-field MR. We envision applications in pre-screening by offering prelimi-
nary diagnostic results to aid in resource allocation, particularly in regions with
limited medical resources.
Limitations: Our proof of concept is based on the fastMRI knee data and specif-
ically MT. One could readily see the application of a portable low-field scanner
in sports medicine [10] but it is a less compelling clinical application. Ideally,
a dataset of e.g. stroke and acute brain trauma [9], which would probe diverse,
and not only structural, MR signal characteristics would be more compelling.
At this moment such dataset is currently lacking. Our policy network relies on
a pre-trained classifier, which can propagate bias and domain shifts to the pol-
icy decisions. It is of great interest to train the classifier simultaneously with
the policy network (e.g., by fine-tuning the classifier) to address domain shifts.
Finally, our policy network does not leverage physical priors of k-space utility
which are implicitly leveraged by reconstruction policies using a pre-trained re-
construction network. Such prior also may encode physical limitations [7] of the
employed sequence in making sampling decisions.

6 Conclusion

Our proposed framework presents a novel approach to enhance the efficiency
and accessibility of MRI as a Point of Care (POC) diagnostic tool by optimising
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sampling patterns in a learnable fashion. Our approach distinctly stipulates that
k-space sampling acquisition decisions are undertaken by an agent optimising a
dynamic per-patient classification task. Results reporting direct inference from
undersampled k-space data, concerning the presence of Meniscus Tear, showed
that our approach achieves the comparable performance as an Oracle Classifier
whilst reducing acquisition time with only 25% k-space usage. Furthermore,
our analysis of task-specific sampling policies revealed that the policy network
adapted its sampling strategy based on the nature of the task, demonstrating
the adaptability of the active sampling approach.
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