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Abstract. Pathological image analysis is a crucial field in deep learning applica-
tions. However, training effective models demands large-scale annotated data, 
which faces challenges due to sampling and annotation scarcity. The rapid devel-
oping generative models show potential to generate more training samples in re-
cent studies. However, they also struggle with generalization diversity when lim-
ited training data is available, making them incapable of generating effective 
samples. Inspired by pathological transitions between different stages, we pro-
pose an adaptive depth-controlled diffusion (ADD) network for effective data 
augmentation. This novel approach is rooted in domain migration, where a hybrid 
attention strategy blends local and global attention priorities. With feature meas-
uring, the adaptive depth-controlled strategy guides the bidirectional diffusion. It 
simulates pathological feature transition and maintains locational similarity. 
Based on a tiny training set (samples ≤ 500), ADD yields cross-domain progres-
sive images with corresponding soft labels. Experiments on two datasets suggest 
significant improvements in generation diversity, and the effectiveness of the 
generated progressive samples is highlighted in downstream classification tasks. 

Keywords: Pathological image analysis, Data augmentation, Diffusion models, 
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1 Introduction 

Histopathology widely serves as the gold standard for cancer diagnosis [1], which 
relies on pathologists to capture the tissue and cellular features of microscopic images 
[2, 3]. With advances in deep learning, neural networks have been applied to assist 
pathological diagnosis, and proven to be effective [4, 5]. However, training effective 
models generally requires a large number of images and high-quality annotations, 
which severely challenges this field. Moreover, unlike natural images, pathological im-
ages generally exhibit higher information densities and similarities [6, 7]. Accordingly, 
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scaling up similar samples contributes limited effectiveness, while learning samples 
with complex and ambiguous patterns help to capture the prominent features. These 
characteristics result in the demand for effective training samples that vary across dif-
ferent pathological states. This further increases the difficulty and cost in sample col-
lection and annotation [8]. 

Nevertheless, recent studies shed insight on synthesizing effective training samples 
[9,10]. In this generative task, traditional GAN-based models are commonly employed 
for their interpretable optimization advantages. However, drawbacks in generative di-
versity and training difficulty hinder their potential in generating high-quality samples 
[11]. In recent studies [12], the diffusion model serves as a promising alternative. Via 
likelihood-based generation, diffusion models present desirable properties in distribu-
tion coverage, stationary training and easy scalability [13,14]. Still, the lack of effective 
controlling and the easy overfitting specialty limits diffusion models on large dataset 
training, which stands against the original purpose of overcoming data deficiencies 
[15]. Consequently, current methods lay significant limits in balancing training scales 
and generation diversity, which can be summarized as “generative contradiction”. 

Fig. 1. The generated progressive samples with their soft-labels. Progressing between different 
pathological stages, feature transition is simulated while the locational similarity is maintained. 

To resolve this “generative contradiction”, we specially focused on progressive char-
acteristics in the pathological stage transition. Specifically, samples of different physi-
ological states reveal feature transition and locational similarity. Therefore, simulating 
these transitions while maintaining locational similarity yields a series of progressive 
samples between different pathological states. As shown in Fig. 1 with two diseases, 
the progressive samples present between-stage patterns (their classification criteria is 
illustrated in the Supplementary Materials Fig. 1). These complex progressive pat-
terns make up effective training samples and therefore motivates our proposal on adap-
tive depth-controlled diffusion (ADD) network. 

In this work, firstly, a pathological domain migration approach is designed where 
the diffusion models are trained with two domains. It provides the basis for the 
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connection between different pathological states. Secondly, a novel hybrid attention 
strategy (HAS) is designed to maintain the effective local and global similarities in 
generation. This design enables training with limited samples while generating diverse 
effective samples following prior knowledge of the source domain. Lastly, in addition 
to the final-state domain migration, we design feature measuring for adaptive depth 
control. This not only ensures image quality regarding the locational similarity, but also 
allows unlimited progressive cross-domain image generation. With these designs, ADD 
is able to generate the progressive samples between different pathological states. 

In summary, we are one of the first to focus on progressive characteristics in patho-
logical images, where a novel data generation approach ADD is proposed. The hybrid 
attention and adaptive depth-controlled strategies effectively ensure the progressive mi-
gration between different pathological stages. Numerical evaluation and case studies 
prove the advanced generation quality and diversity compared to the state-of-the-art 
(SOTA) methods. Furthermore, adapt to small datasets, we generate effective samples 
for progressive soft-labels supervisions. Experimental results on two pathological da-
tasets highlight generation performance and significant enhancement in the down-
stream classification. 

Fig. 2. Overview of ADD method, where the U-BDP for domain migration is shown in a; the U-
net diffusion model and the hybrid attention strategy with different local and global priorities 
are shown in b; and an adaptive depth-controlled strategy with feature measuring is shown in c. 

2 Method 

2.1 Diffusion Models for Domain Migration 

To achieve cross-domain migration, we represent a U-shaped bidirectional diffusion 
process (U-BDP) shown in Fig. 2a. Based on the denoising diffusion implicit model 
(DDIM), it encompasses two basic processes: the forward diffusion process and the 
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reverse denoising process [16,17]. In the forward process, the noisy image tx and the
original image 0x  can be expressed as:  

( ) ( )( )0 0 , 1 ,t t tq x x x= − I  (1) 

where t is the parameter, and I is the identity matrix. In the reverse denoising pro-
cess, 1tx − can be obtained by reversing the forward diffusion process to sample from 
the noisy input tx with a normal distribution:

( ) ( )2
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where ( )tx  represents the normally distributed noise predicted by   based on the 
noisy image at step t . This denoising process can be totally definite, if t is set to 0, 
making 1tx − independent with random noise  . It provides a theoretical basis for 
bridging two different domains [18]. 

As any diffusion process can be represented by a deterministic ordinary differential 
equation (ODE) that carried the same marginal densities. Mapping ( )1x t  from ( )0x t  can 
be then treated as intergration over the following ODE: 

( )( ) ( ) ( )( )1

0
0 0 1 0; , , , ,

t

t
ODE x t v t t x t v t x t dt= +   (3) 

where /v dx dt= . Furthermore, image transfer can be achieved by bridging the two do-
mains through a connection between two bidirectional ODE equations: 

( ) ( ) ( )( ) ( ) ( ) ( )( ); ,0,1 , ; ,1,0 .l s s t l t

A A B Ax ODE x v x ODE x v= =  (4) 

Therefore, the latent space representation ( )l
Ax  of the source image ( )s

Ax  is obtained 
through the forward ODE in domain A, and then transformed into ( )t

Bx  in domain B 
using the reversed ODE denoising process. 

2.2 Hybrid Attention Strategy 

To ensure the effectiveness of generated sample, the domain migration aims to es-
tablish a visual connection between the migrated samples and their source counterparts. 
Accordingly, the ideal output image ( )t

Bx  should strictly belong to target domain B 
while maintaining the visual consistency with ( )s

Ax . Based on the U-Net with self-atten-
tion [16] for predicting noise, we further proposed a hybrid attention strategy (HAS) to 
achieve this intension. As shown in Fig. 2a, two attention-based U-Nets are applied 
correspondingly to the diffusion and denoising processes. Their improved attention 
modules in U-Net with global and local priorities are illustrated in Fig. 2b. 

Specifically, in each block of the diffusion model, the features are processed by 2 
CNN (C) and 1 attention (A) modules. The attention module does not change the shape 
of the input vector, while its MLP and attention calculation prioritize the feature. In the 
diffusion process, we first perform MLP (with global view) to get the corresponding Q, 
K, V and then split them into multi heads for attention. Prioritizing the global self-
attention contributes to retaining the appearance consistency. On the contrary, in the 
denoising process, the features are split into multiple local heads and then the Q, K, V 
and attention are calculated with local MLP. This ensures the consistency in domain 
migration with prominent spatial features. 
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2.3 Adaptive Depth-controlled Strategy with Feature Measuring 

To effectively ensure the migration and generate progressive samples between dif-
ferent pathological stages, we further propose the adaptive depth-controlled strategy. 
Due to the consecutiveness of ODE, for any step (0 )t,t ,T  corresponding to an inter-
mediate state i, i t T= , the following process still exists: 

( ) ( ) ( )( ) ( ) ( ) ( )( ); ,0, , ; ,1, ,i s s t l s
x ODE x v i x ODE x v i= =  (5) 

Since different ODEs are trained using the same diffusion process, the linear adding 
noise builds ( )i

Ax  and ( )i
Bx  to have a similar noise level at any state i . In domain migra-

tion, ( )ix serves as an intermediate state between A and B, which is positively correlated 
to i T  . Therefore, it allows us to simulate the pathological transition process when gen-
erate the images. As shown in Fig. 2c, by controlling the depth of the U-BDP, progres-
sive state of generation can be controlled via the domain migration state i . Moreover, 
the soft-labels can be assigned to describe the states of generated images: 

( )( ), , , 0, 1, 0,1 .A B I A B IL L L L L L= =  (6) 
where AL , BL and IL represents the label of samples in domain A, domain B and inter-
mediate states. 

Generally, depths with substantial distances should yield very similar migration im-
ages. However, for a same progressive state IL , the migration state depths i  may vary 
significantly in different samples. Accordingly, we design a feature measuring indicator 
to control the state depths i  and ensure the generation acurracy. Specifically, the pat-
tern of pathological images is primarily determined by the tissue or cellular structures, 
which are mainly carried by high-frequency details (shown in Supplementary Mate-
rials Fig.2). Therefore, the noising and denoising process of diffusion can be viewed 
as encompassing the degradation and recovery of these high-frequency information. 

To measure the feature change, we perform a fast Fourier transform (FFT) on ( )ix

and use high-pass filter through mask hM  to calculate its average magnitude as ( )ix : 
( ) ( )( ) ( )i i

hh
x FFT x M= (7) 

( )( )
( )

i

i

x h
x= (8) 

Given the amplitude of ( )ix , ( )sx and ( )lx through the same above way, progressive state 
IL corresponding to ( )ix can be determined as follows: 

( ) ( )(s ) ( ) ( ) ( )/i s lI x x x x
L = − − (9) 

Similarly, in the given case of any ( )sx and corresponding ( )lx , it is also possible to
generate intermediate pathological image I  with the given soft label IL . 

3 Experiment 

3.1 Dataset and Experimental Settings 

Dataset. The pancreatic cancer Rapid On-site Evaluation (ROSE) dataset was collected 
at the Peking Union Medical College Hospital. It composes of 1154 typical pancreatic 
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cancer samples and 795 normal samples labelled by senior pathologists. The Papillary 
Renal Cell Carcinoma (pRCC) dataset is a binary-classification (870 Type1 and 547 
Type2 samples) dataset open-sourced from study [19]. In this study, 500 samples from 
each category are randomly selected as training set, while the remaining samples are 
splitted into validation and test set under a ratio of 1:2. Accordingly, the training set is 
used in the generation and downstream training, while the validation and test sets are 
only applied in the downstream evaluations. Full dataset is used for numerical quality 
evaluation for the generated images.  

Baselines. In sample generation, we have implemented several SOTA methods follow-
ing their official settings, including ProGAN, LoFGAN and MixDL based on GAN, 
and IDDPM based on Diffusion [20-23]. In the downstream classification, ViT is em-
ployed as the backbone for downstream classification test. The hyper-parameters of all 
methods are optimized in experiments.  

Metrics. To compare the generation performance numerically, following [15,20-23], 
we employ the Frechet Inception Distance (FID) and sFID to measure the distribution 
difference of generated and real images. Furthermore, we use the Learned Perceptual 
Image Patch Similarity (LPIPS) to measure the diversity of generated samples. Lastly, 
in downstream classification, standard evaluation of accuracy and F1-score are re-
ported. 

3.2 Generation Evaluation 

Numerical Evaluation: To evaluate the effectiveness on sample generation, the ADD 
and SOTAs are utilized to randomly generate 500 pseudo samples in each category. 
The numerical comparisons are reported in Table 1, where the FID and sFID indicate 
better performance in lower values while LPIPS indicates better performance in higher 
values. 

On both datasets, ADD achieves the best numerical results compared to SOTAs. 
Specifically, ADD introduces the pathological domain migration approach to model 
changes in physiological states. Meanwhile, with hybrid attention strategy, pseudo im-
ages with high local similarity are generated. This results in better FID and sFID per-
formance. Moreover, regarding generation diversity, the diffusion-based ADD shows 
more strength in learning the diverse distribution compared to the traditional GAN-
based models. By exploiting the few-shot training samples, ADD provides higher di-
versity (LPIPS) against other methods. 

Table 1. Generation performance evaluation on ROSE and PRCC datasets. 

Model ROSE pRCC 
FID(↓) sFID(↓) LPIPS(↑) FID(↓) sFID(↓) LPIPS(↑) 

ProGAN[20] 147.83 127.31 0.6014 129.58 133.54 0.5892 
IDDPM [21] 74.52 83.96 0.5109 64.52 83.96 0.5328 
LoFGAN [22] 91.77 87.74 0.5621 83.15 95.72 0.5534 
MixDL [23] 122.92 100.73 0.5398 117.75 88.85 0.5013 
ADD (no-HAS) 61.71 74.64 0.4398 67.93 84.64 0.4125 
ADD 67.83 70.29 0.6267 58.31 81.26 0.6078 
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Case Study: ADD and three comparison methods with better numerical performance 
are presented in Fig. 3a Specifically, 4 original images from 2 datasets are shown in 
the first row, and the generated images are shown in the following rows. With the anal-
ysis of senior pathologists, the pseudo samples generated by ADD are visually closer 
to the original samples, which retain the original cell distribution outlines. Moreover, 
they present the diverse pathological spatial changes regarding the pathological states. 
Specifically, compared to other methods, the unique anisocytosis and irregular orienta-
tion can be more accurately expressed from ADD in positive ROSE samples. Mean-
while, ADD generates pRCC samples with clear basal cell proliferation and cell layer 
differences. It demonstrates our method with advanced multi-scale feature modelling. 
More generated samples are shown in Supplementary Materials Fig. 3-6. 

Fig. 3. Qualitive generation results of different methods in a; and ablation results on 
pathological domain migration in b. 

Effective migration with HAS: The U-BDP provides with the possibility to migrate 
images from different domains. Nevertheless, pathological images share the similar bi-
ological spatial features and progressive global feature distributions. This highlights 
model learning the spatial and global similarities and progressive patterns. Illustrated 
in Fig. 3b, using U-BDP baseline in migration results only minor changes in color and 
contours. Conversely, the proposed HAS effectively enhances the reverse denoising 
process with feature recognition between the hidden space and the two source domains. 
Accordingly, the generated images retain the original color style and spatial distribu-
tion, while maintaining consistency with the pattern distribution of the target domain. 
The numerical performance in Table 1 confirms the effectiveness of HAS (ADD vs U-
BDP), while the generated samples in Fig. 3b visualize its performance. 

3.3 Effectiveness in Generating Progressive Samples 

Generating Progressive Pathological Samples: To simulate the pathological transi-
tion process, an adaptive depth-controlled strategy is designed in ADD. It controls the 
extent of domain migration by measuring the feature similarity to the target domain. 
Specifically, feature similarity is measured by the adaptive image Fourier transform, 
which yield the progressive depth and corresponding classification soft labels. Two se-
ries of yielding progressive images are shown in Fig. 1. Taking ROSE for example, the 
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positive samples are mutated from the negative ones, with positive features gradually 
appearing in the transition progress. We can take the information changes as measure-
ments (0.5 for likely 50% of supports in positive identification) for cells that undergo 
changes in nucleus-cytoplasm ratio or morphology.These high-quality progressive 
pathological samples provide a novel learning objective for downstream tasks. 

Classification Evaluation: Generating samples is serving as effective data-augmenta-
tions for the downstream tasks. Accordingly, we employ all methods to generate 500 
new pseudo samples, forming a series generated training sets. Then, these generated 
training sets are used for comparison under the same conditions with the baseline real-
image training set (Supplementary Materials Table 1). Generating the final stage of 
pseudo samples, ViT trained with ADD outperforms other SOTA generations on both 
ROSE and pRCC datasets. The results prove that our proposed method generates more 
effective samples with highest distribution consistency to the real images. 

Then, the data augmentation performance is explored in the mixed scenario, where 
a series of aug-trainsets are assembled with 500 generated samples and 500 real sam-
ples. The corresponding classification results are shown in Supplementary Materials 
Table 2, and some improvements can be observed from IDDPM, LoFGAN and ADD. 
This validates the augmentation of generative methods for downstream tasks, and 
shows the superiority of ADD from comparison. We attribute this to the amplified di-
versity and weakening of model overfitting from data expansion. 

However, generation enhancements are limited or even leads to a decrease when 
scaling up the aug-trainset to 5000 generated samples. This indicates the excessive data 
may be too similar and redundant for downstream learning. On the contrary, taking the 
pathological observation on progressive states, ADD is used to generate 500 progres-
sive samples. Covering multiple progressive states, it forms a total of 5000 soft-labeled 
samples as training set. Marked as ADD-Pro in Table 2, it demonstrates far superior 
data augmentation performance, evidently enhanced by the most effective samples via 
progressive data generation. 

Table 2. Comparisons in the downstream classifications using aug-trainset (5000). The arrow 
indicates the augmentation of generated models compared with baseline. 

Generative 
Model 

ROSE pRCC 
Accuracy (%) F1-score (%) Accuracy (%) F1-score (%) 

Baseline 78.13 79.09 83.50 85.36 
ProGAN 71.01 71.58 73.69 74.01 
IDDPM 78.21↑ 79.25↑ 84.10↑ 85.42↑ 
LoFGAN 73.98 74.02 83.65↑ 85.48↑ 
MixDL 66.35 68.25 76.28 77.26 
ADD (Ours) 79.87↑ 80.53↑ 86.02↑ 87.54↑ 
ADD-Pro (Ours) 81.01↑ 83.14↑ 87.45↑ 88.77↑ 

4 Conclusion 

In conclusion, with the observation of the pathological transitions, we proposed a novel 
adaptive depth-controlled diffusion (ADD) network to generate progressive samples. 
Introducing the hybrid attention and adaptive depth-controlled strategies, effective 
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pathological images are generated through domain migration. The “generative contra-
diction” is overcomed with high generation quality and diversity. Moreover, by apply-
ing generated progressive samples in downstream classification, we are one of the first 
to explore the progressive pathological states as an effective learning objective. Numer-
ical SOTA performance brings insight into improving future pathological image anal-
ysis. 
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