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Abstract. Intracerebral hemorrhage (ICH) is a cerebrovascular disease
with high mortality and morbidity rates. Early-stage ICH patients often
lack clear surgical indications, which is quite challenging for neurosur-
geons to make treatment decisions. Currently, early treatment decisions
for ICH primarily rely on the clinical experience of neurosurgeons. Al-
though there have been attempts to combine local CT imaging with
clinical data for decision-making, these approaches fail to provide deep
semantic analysis and do not fully leverage the synergistic effects between
different modalities. To address this issue, this paper introduces a novel
multi-modality predictive model that combines CT images and clinical
data to provide reliable treatment decisions for ICH patients. Specifi-
cally, this model employs a combination of 3D CNN and Transformer
to analyze patients’ brain CT scans, effectively capturing the 3D spatial
information of intracranial hematomas and surrounding brain tissue. In
addition, it utilizes a contrastive language-image pre-training (CLIP)
module to extract demographic features and important clinical data and
integrates with CT imaging data through a cross-attention mechanism.
Furthermore, a novel CNN-based multilayer perceptron (MLP) layer is
designed to enhance the understanding of the 3D spatial features. Ex-
tensive experiments conducted on real clinical datasets demonstrate that
the proposed method significantly improves the accuracy of treatment
decisions compared to existing state-of-the-art methods. Code is avail-
able at https://github.com/Henry-Xiong/3DCT-ICH.
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1 Introduction

Intracerebral hemorrhage (ICH) is a prevalent cerebrovascular disease caused
by the non-traumatic rupture of intracranial vessels and carries exceptionally
high rates of mortality and disability [8,20]. Recently, the incidence of ICH has
been on a sharply rising trend, particularly in China, where the proportion of
strokes attributed to ICH ranges from 18.8% to 47.6%, substantially surpassing
the international average. In clinical practice, choosing the appropriate treat-
ment approach—whether surgical or conservative—is essential for the prognosis
of ICH patients [1,10]. This is especially pertinent for patients who, based on
initial cranial CT scans, are deemed to lack surgical indications but, in reality,
require operative intervention; selecting an incorrect treatment method can re-
sult in grave outcomes, even threatening the patient’s life [18,23]. Consequently,
there is a pressing need for more objective decision-making tools in clinical prac-
tice to aid physicians in making precise treatment decisions. Unfortunately, the
current strategies for ICH treatment primarily rely on clinicians’ interpretations
of medical guidelines combined with their own experience, which introduces a
degree of subjectivity and limitations, such as challenges in making effective
early-stage predictions [16].

However, to address the limitations of experience-based decision-making meth-
ods, researchers have explored evidence-based and individualized predictive mod-
els [3]. While most existing studies rely solely on data from a single modality,
such as imaging data, in actual medical scenarios, neurosurgeons need to inte-
grate a wide range of information, including the patient’s radiographic features,
clinical presentation, and laboratory test results [7,11,17]. In this process, the
interpretation of imaging data is significantly influenced by clinical information.
For example, neurosurgeons need to consider a patient’s overall health and symp-
toms when evaluating a brain scan. While some studies integrate multi-modality
features, they often directly input numerical values of laboratory results or scor-
ing scales [15,22,25]. This approach makes it challenging for the model to fully
explore the potential correlations between imaging and clinical data [24]. More
critically, although some research has adopted multi-modality approaches, they
have only collected data from specific brain regions without using the patient’s
whole-brain imaging data as input, hindering the model’s understanding of in-
tracerebral hemorrhage and surrounding brain tissue [2,15,22], as well as limiting
the accuracy and comprehensiveness of predictions. Crucially, the hemorrhage’s
size, location, and impact on surrounding brain tissues are critical factors in de-
termining the most appropriate treatment. Existing methods fall short by only
analyzing specific brain regions, which limits their ability to provide precise and
personalized decision support.

Therefore, this study designs a model that integrates initial CT scans, de-
mographic data, and clinical tests as structured data to assist neurosurgeons
in making reliable treatment decisions at an early stage. Recently, Transformer
have set new benchmarks in computer vision tasks [4,12]. Specifically, the Vision
Transformer (ViT) [5] processes images in small segments, or patches, to model
long-range dependencies through an attention mechanism, providing a compre-
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hensive view. However, segmenting 3D CT data directly into patches can miss
important spatial details, which 3D CNN can capture with their convolutional
operations [4,24]. Motivated by this finding, our model combines 3D CNN and
Transformers to grasp both local and global features effectively. It starts with a
3D CNN extracting spatial features and downsampling the 3D images to com-
pact feature maps, which captures local context efficiently and reduces compu-
tational load. These maps are then transformed into tokens for the ViT to model
global features. Additionally, to enhance understanding of clinical data, we em-
ploy a pre-trained text encoder from the contrastive language-image pre-training
(CLIP) [21] model to transform demographic and clinical data into descriptive
vectors. This step ensures a more profound comprehension of medical knowledge
and integrates it with CT imaging features using a cross-attention module [14].
Lastly, recognizing the traditional multilayer perceptron (MLP) layer’s limita-
tions in ViT for capturing deep semantic features, we innovate with a CNN-based
MLP layer (CMLP), enhancing the model’s ability to understand global spatial
information and improve prediction accuracy.

The key contributions of this work are as follows.

1. Introducing a multi-modality prediction model that combines 3D CNN with
Transformers, utilizing CT images and clinical data at admission to effec-
tively predict treatment approaches for ICH.

2. Utilizing a pre-trained CLIP model, we enhance multi-modality information
integration and deepen the model’s understanding of specialized medical
knowledge. Additionally, we introduce a CNN-based MLP layer to improve
global spatial feature detection.

2 Methods

2.1 Architecture of Multi-modality Model

Our multi-modality model architecture is presented in Fig. 1. Concretely, it pro-
cesses a 3D CT scan (dimensions H×W ×D for height, width and depth) using
2D and 3D CNNs to capture planar and spatial information. An improved Trans-
former effectively integrates data from both modalities to generate predictions.
The following sections will describe the components of the model in detail.

2.2 Feature Extraction

Given the high computational costs associated with segmenting 3D medical
imaging data into small 3D patches and flattening them for Transformer pro-
cessing, we utilize both 2D and 3D convolutions to efficiently extract features
from CT images. Considering the unevenness in depth compared to width and
height in CT images (512 × 512 × 128), we first apply 2D convolutions of size
3× 3 to extract features from each axial slice, converting the CT image dimen-
sions to a uniform 128 × 128 × 128 cube for subsequent processing. To further
refine features, we apply 3D convolutions of size 3× 3× 3 to construct residual
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Fig. 1. Architecture of our multi-modality model.

connection blocks, reducing the high-dimensional 3D CT images through four
downsampling steps to feature maps (16 × 16 × 16) with rich, high-level repre-
sentations. Finally, we resize these feature maps and add positional encoding to
form the final input feature maps, which are then fed into subsequent modules
for a deeper exploration of the global receptive field.

2.3 CLIP Module

Leveraging CLIP’s superior textual feature comprehension, we initially merge
numerical and textual data into sentences depicting patient conditions. CLIP’s
text encoder, a Transformer-based module, extracts crucial information for deep
semantic representation. To reconcile textual and image data dimension dis-
parities, an upsampling layer adjusts text feature sizes for image-text modality
alignment. Feature fusion employs a cross-attention mechanism by:

Attention(Q(t),K(i), V (i)) = softmax
(
Q(t)(K(i))T√

dk

)
V (i), (1)

where Q(t) represents the query vectors derived from the textual data, while K(i)

and V (i) correspond to the key and value vectors generated from the image data,
respectively. dk denotes the dimensionality of the key vectors, serving as a scaling
factor. This processing enhances CT and clinical data integration, facilitating a
more comprehensive analysis. This not only deepens clinical data understanding
but also mimics the clinical diagnostic approach.
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2.4 CMLP

In ViT, the features extracted by the attention mechanism typically rely on the
processing by MLP. Building on this, we redesign the MLP layer using CNN to
enhance spatial information capture. Initially, we separate the CLS token from
feature vectors. Then, we perform an upward projection of the remaining fea-
tures, allowing them to pass through a 3 × 3 convolution layer followed by a
1 × 1 convolution layer. The features produced by these convolution layers are
merged and resized to their original dimensions through a downward projection.
Subsequently, these features are transformed into a single weight α, via aver-
age pooling, multiplied by the CLS token. Finally, this processed CLS token is
concatenated with the CNN-processed features, aiming to improve the model’s
ability to capture adjacent features and enhance spatial information perception
and utilization.

3 Experiments

3.1 Dataset and Experimental Details

Dataset. We use a dataset of ICH cases obtained from The Second Affiliated
Hospital of Fujian Medical University, comprising CT images and clinical data
from 442 patients, 196 treated conservatively and 246 surgically. The clinical
data includes 20 variables (gender, age, hypertension, diabetes, smoking history,
drinking history, time of onset, glasgow coma scale (GCS), national institute of
health stroke scale (NIHSS), heart rate, potassium, sodium, white blood cells,
platelets, prothrombin time (PT), international normalized ratio (INR), acti-
vated partial thromboplastin time (APTT), fibrinogen (FIB), thrombin time
(TT), D-dimer) at admission, most of which have been shown to correlate with
ICH treatment and prognosis [9]. The ethics committee approved all data col-
lection and usage procedures in this study.
Experimental details. CT images are preprocessed by performing skull strip-
ping using a trained nnUnet to eliminate extraneous interference. Images are
normalized and zero-padded to standardize varying slice thicknesses to a depth
128. We set epochs to 50, batch size to 8, with cross-entropy as the loss func-
tion, and employ the AdamW [13] optimizer with an initial learning rate of
1e-4. Experiments are conducted using PyTorch on two NVIDIA Quadro RTX
6000 GPUs (each has 24GB memory). Model performance is evaluated through
five-fold cross-validation, using Accuracy, AUC, Precision, Recall, and F1-Score
metrics.

3.2 Results

To evaluate our model’s performance, we compare it against the state-of-the-art
predictive models. These models include ResNet [6], a commonly used model
in medical diagnostic predictions serving as the baseline� IRENR [25], which
employs two parallel Transformer blocks for multimodal fusion and prediction�



6 Xiong et al.

Table 1. Comparison with state-of-the-art methods on dataset.

Method AUC Accuracy Precision Recall F1-score
ResNet [6] .636 .679 .662 .844 .732

IRENR [25] .643 .619 .602 .573 .587
DAFT [19] .812 .750 .743 .802 .780

GCS-ICHNet [22] .686 .621 .610 .940 .730
TOP-GPM [15] .767 .736 .857 .680 .756
Ours (only CT) .568 .650 .570 .896 .686

Ours .903 .846 .864 .818 .856

DAFT [19], featuring a CNN module that dynamically rescales and shifts convo-
lutional feature maps for multimodal prediction� GCS-ICHNet [22], integrating
brain CT slices and GCS scores via attention mechanism for patient prediction
through voting� and TOP-GPM [15], using a variational distribution combina-
tion module to merge CT images, clinical data, and treatment assignment for
generating patient prognosis scores. Apart from ResNet, other models are ap-
plied based on our multimodal data for a fair comparison.

Fig. 2. Five-fold cross-validation ROC and PRC.

Tab. 1 summarizes the performance comparison of different approaches for
predicting ICH treatment methods using these five metrics. Additionally, a uni-
modal prediction using only CT images is performed with our model. Compared
to the baseline, our multi-modality models generally outperform the uni-modal
one due to the access to more comprehensive patient data. IRENR and GCS-
ICHNet, which rely only on information from individual CT slices, fail to repre-
sent the complete patient profile. DAFT and TOP-GPM only utilize data from
specific brain regions, lacking a global understanding of the imaging. Our model
surpasses others by analyzing the entire brain, addressing these shortcomings,
and achieving more accurate predictive performance, as detailed in the five-
fold cross-validation results shown in Fig. 2. In the original study, GCS-ICHNet
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achieves an AUC and accuracy of 0.860 and 0.857 respectively, while TOP-GPM
has average AUC and accuracy of 0.787 and 0.811 across two categories. How-
ever, compared to the original experimental results, our results show a certain
degree of decline. This decrease is primarily attributed to differences in data
distribution and the fact that the tasks our research addresses differ from those
targeted by these two models designed for ICH.

3.3 Ablation Study

We conduct ablation experiments as shown in Tab. 2 to validate the effective-
ness of combining the CLIP module with the CMLP in enhancing multi-modality
data processing capabilities. We first evaluate the model’s performance without
the CLIP or CMLP module. Then, we assess its performance with each mod-
ule integrated independently. With only the CLIP module deployed, the model
demonstrates its capability to fuse deep semantic features between text and im-
ages. However, due to the lack of sufficient spatial information processing, it
fails to fully leverage clinical data for comprehensively understanding complex
3D CT images, which limits the enhancement of performance. Similarly, while
the CMLP aims to boost spatial information capture, the absence of CLIP mod-
ule support prevents the effective integration of deep semantic links between
modalities. Despite improvements in spatial feature handling by the CLIP mod-
ule, the lack of optimized multi-modal data fusion still hinders performance
enhancement.

Table 2. Ablation study

CT Texts CLIP CMLP AUC Acc
3 3 7 7 .608± .064 .563± .033
3 3 3 7 .604± .028 .563± .036
3 3 7 3 .603± .030 .565± .035
3 3 3 3 .903± .053 .846± .064

It is evident that we designed the CLIP module and CMLP to exhibit clear
complementary functionality at the operational level. When combined, their
combined effect not only optimizes the fusion process between modalities but
also significantly enhances spatial feature capture, thereby substantially improv-
ing model performance.

4 Conclusion

This paper introduces a novel multi-modality model that combines CT images
and clinical data to provide reliable treatment decisions for patients with early-
stage ICH. The model leverages 3D CNN with Transformers to analyze compre-
hensive brain information and employs a CLIP module with cross-attention for
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multi-modality data fusion. Additionally, a redesigned CNN-based MLP layer
enhances the model’s ability to capture data features. The model’s effectiveness
is validated through five-fold cross-validation.
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