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Abstract. Brain network is an important tool for understanding the
brain, offering insights for scientific research and clinical diagnosis. Ex-
isting models for brain networks typically primarily focus on brain re-
gions or overlook the complexity of brain connectivities. MRI-derived
brain network data is commonly susceptible to connectivity noise, un-
derscoring the necessity of incorporating connectivities into the mod-
eling of brain networks. To address this gap, we introduce a differen-
tiable module for refining brain connectivity. We develop the multivari-
ate optimization based on information bottleneck theory to address the
complexity of the brain network and filter noisy or redundant connec-
tions. Also, our method functions as a flexible plugin that is adapt-
able to most graph neural networks. Our extensive experimental results
show that the proposed method can significantly improve the perfor-
mance of various baseline models and outperform other state-of-the-art
methods, indicating the effectiveness and generalizability of the proposed
method in refining brain network connectivity. The code is available at
https://github.com/Fighting-HHY/D-CoRP

Keywords: Functional Brain Network · Graph Structure Learning · In-
formation Bottleneck.

1 Introduction

The human brain comprises multiple sophisticated brain regions, empowering it
to navigate intricate cognitive processes and handle everyday tasks [13]. Recent
advances in neuroscience suggest that brain function is fulfilled by the coor-
dinated activities of brain regions through connectivities [17]. Brain networks,
graphical representations of the brain, hold the potential to characterize re-
gional and global brain activities [5,14,27]. Functional brain networks, derived
from function MRI (fMRI), is one of the most important tools for characterizing
the brain function. However, it remains challenging to effectively leverage the
information in functional brain networks due to their non-Euclidean structure.
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Graph neural networks (GNNs) [33] promise to offer effective toolkits to an-
alyze graph data [25]. For example, BrainGNN is proposed to effectively aggre-
gate the information from functional brain networks for learning tasks [15,26].
Graph pooling methods are developed for characterizing network modularity,
e.g., TopK, a score-based pooling method [9] and DiffPool, a hierarchical pooling
method [30]. However, these models only focus on node features without consid-
ering edge connections, which may particularly limit the model performance on
MRI-derived brain networks that are prone to edge noises or redundancies[28].

Previous studies proposed graph structure learning (GSL) to denoise and op-
timize graph structure [34]. Despite successes, existing GSL models are developed
for specific types of graphs (e.g. community networks, population graphs) using
rigid optimization approaches (e.g., community property optimization), and they
are often limited in generalizability to other graphs once trained. Scanty models
have been proposed for brain networks so far. Though a recent model [32] pro-
poses to reconstruct brain networks through time windows extracting features
from fMRI, it cannot work directly on graphs (e.g., correlation matrices).

Information bottleneck (IB) theory [20] employs a probabilistic optimization
between predictive performance and information compression by focusing on
model-processed features of the input graph. Unlike typical GSL methods, IB is
not restricted to a specific type of graph, which brings the advantages of gen-
eralizability while effectively removing noisy and irrelevant information. These
advantages could equip IB as a competitive framework for denoising graphs.

To denoise the graph, previous IB-based methods perform subgraph filtering
that updates the graph structure, e.g., subgraph information bottleneck (SIB)
[31]. However, this approach treats the entire subgraph as processed features
without performing differentiable refinement, which may lead to less desirable
performance in removing edges. By contrast, other methods perform edge and
node filtering, preserving the overall structure, e.g., VIB-GSL [19]. Nevertheless,
these methods assume the optimized graph follows a standard Gaussian distri-
bution, which may over-simplify the true distributions of edge connections that
vary across different brain regions. Finally, all these methods are implemented
as a fixed framework, lacking adaptability to existing GNN frameworks and hin-
dering wider applicability. Thus, it remains a challenge to develop additional
processing steps to refine edge connections integrated into existing frameworks.

We propose an edge-denoising method for functional brain networks based
on IB theory, namely DifferentiableConnectionRefinement Plugin (D-CoRP),
serving to detect and remove noisy or irrelevant connections from brain networks
as an adaptable plugin. Our main contributions include:

1) We design a new differentiable sampling method that renders the plugin
learnable, considering the probability of completely removing noisy connections.

2) We propose a new optimization strategy to model each connection inde-
pendently with multivariate distribution targets in an IB-adopted framework.

3) As far as we know, this is the first plugin for connectivity refinement
of brain networks, adding minimal computation to backbone training. We also
provide an efficient mode for flexible adoption.
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We evaluated our plugin on three datasets of functional brain networks. D-
CoRP is shown to effectively remove noisy and irrelevant connections and en-
hance the performance of the GNN backbones, achieving a better and more
stable performance compared with other state-of-the-art methods.

2 Methods

2.1 Overview

Define the target brain network to be refined as Gt. Suppose Gt = (X,A),
where X ∈ RN×F is brain region features such as brain activities at each region
or geometric properties of the brain network and A ∈ RN×N is the adjacency
matrix consisting of connections between each brain regions (e.g., for functional
brain network derived from fMRI data, the connection can be Pearson correlation
between two brain regions’ activities), with N being the amount of brain region,
F being the dimension of region features. We aim to find a refined functional
brain network adjacency matrix Are based on the original A, formulated as,

Are = m⊙A, (1)

where m ∈ RN×N is the learnable edge mask with binary elements, indicating
the essential connections within brain networks. To learn the refinement mask
m, we propose to apply the IB theory [20,21], which makes m as a processed
feature connected to the model’s input and output.

2.2 Differentiable Connectivity Refinement

The binary refinement matrix m is naturally modeled as being Bernoulli dis-
tributed. However, the binary values are not differentiable, which hinders the
gradient propagation in the learning process; thus, it is intractable. To address
this, we relax the binary matrix m to a pseudo binary matrix, with each value in
it being between [0, 1], which can be uniformly sampled from a predefined func-
tion. We design this function such that a sampled value will be mostly closed to 0
or 1, resembling to the binary case (see Eq.(4) for the specific expression), which
is parameterized by a learning probability matrix P , indicating the probabilities
of corresponding edges being preserved.

Generation of Selection Probabilities (Distribution Estimator) The
probability matrix P is obtained via an auxiliary graph network (GAT) with the
node features X and adjacency matrix A, followed by the operation Sigmoid,

Z = GAT(X,A). (2)

P = Sigmoid
(
ZZT

)
. (3)

where Z,P ∈ RN×N . We choose GAT to distil critical graph information due
to its efficient attention mechanism.
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Fig. 1: Model architecture. D-CoRP refines the graph connection in two steps:
1) Differentiable sampling for the masking matrix (i.e.,Distribution Estimator
extracts the necessity probability of network connections and Differentiable
Sampling utilizes differentiable sampling methods filtrating necessary connec-
tions); 2) Information bottleneck optimization for the refined results as shown
in IB Optimizer part.

Differentiable Sampling for Masking Matrix The sampling is per-
formed via a differentiable function adapted from the concrete relaxation of
Bernoulli distribution [19]:

F(P |A) = F(P ,Π : T ) =
1

2
(1− tanh(

Π +P − 1

T
)) =

1

1 + e−
2(Π+P−1)

T
(4)

where Π ∼ U(0, 1) provides uniformly random sampling. T represents the tem-
perature for the function. This function can directly relate the probability matrix
to the sampling process as Bernoulli distribution. When T → 0, we can treat
F(P ,Π : T ) ≈ Ber(P), a Bernoulli distribution, while F(P ,Π : T ) always
keeps continuous in the [0, 1] range. Unlike the previous concrete relaxation,
Eq. (4) achieves the closed interval [0,1] for P , ensuring the full or zero prob-
ability of preserving brain connections. Also, it provides a smoother change of
gradient without computing the logarithm, preventing the training process from
exponential explosion.

2.3 Optimization with Information Bottleneck

In D-CoRP, the adjacency matrix A is the input data and Are is the processed
feature. Combined with general variational bounds developed by Alemi et al. [1],
we design the optimization for brain network refinement (the specific derivation
is provided in the supplementary):

LIB = EAre∼pθ(Are|A)[−logq(Y |Are)] + βKL[p(Are|A), r(Are)] (5)
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Further introducing the upper bound of Eq. (5)’s right side, we conduct two
tractable optimization targets for brain network connectivity refinement:

LAIB = EAre∼pθ(Are|A)[−logq(Y |Are)] + βKL[N (P ;Σ),N (µm;Σ)] (6)

LAIB−E = EAre∼pθ(Are|A)[−logq(Y |Are)] + βKL[p(m|A), r(m)] (7)

where r(m) is the prior distribution of m approximating p(m); µm and Σ
are the parameters approximating the multivariate Gaussian distribution of m.
LAIB is the optimization target of D-CoRP and LAIB−E is the optimization tar-
get of D-CoRP: Efficient, a lighter version of D-CoRP. The proof can be found
in the Supplementary. Since the left-sides of Eq. (6) and (7) are already done
by the model comparing the prediction with ground truth, we only optimize an
additional KL[N (P ;Σ),N (µm;Σ)] or KL[p(m|A), r(m)]. For D-CoRP: Effi-
cient, the plugin adds an additional O(NF 2) in computational complexity to
the plugged model; For D-CoRP, the additional computational complexity is
O(N6)

FCP NKI-Rockland ADHD-Normal

Baseline Plugin MAE RMSE MAE RMSE MAE RMSE

Basic
GNN

Module

GCN [12]
None 15.27±1.47 21.20±6.76 85.98±45.23 209.49±127.55 10.57±3.56 18.23±5.51

D-CoRP (Single) 8.94±0.15 12.13±0.28 16.14±0.36 20.32±1.06 2.77±0.23 3.45±0.22
D-CoRP (Full) 9.36±0.59 12.53±0.61 16.76±1.22 21.28±1.22 2.96±0.17 3.87±0.24

GAT [23]
None 20.44±7.03 22.08±6.87 23.36±12.65 28.78±12.44 3.17±0.18 3.59±0.24

D-CoRP (Single) 9.31±0.16 13.03±0.26 16.06±1.50 20.18±1.51 2.83±0.19 3.47±0.23
D-CoRP (Full) 9.80±0.74 13.37±1.08 18.00±1.45 22.26±2.70 3.28±0.27 4.20±0.30

GIN [29]
None 10.85±0.38 14.76±1.71 17.43±4.12 20.28±3.68 5.92±1.47 8.90±3.38

D-CoRP (Single) 9.11±0.18 12.24±0.38 15.62±1.43 19.60±1.66 2.73±0.13 3.42±0.17
D-CoRP (Full) 9.29±0.29 12.50±0.24 15.31±0.73 19.06±0.97 3.18±0.41 3.89±0.46

GraphSAGE [10]
None 15.72±2.51 30.24±11.99 44.55±14.64 104.86±60.86 4.42±0.26 5.44±0.32

D-CoRP (Single) 9.28±0.39 12.33±0.47 15.19±0.91 19.71±1.42 2.65±0.17 3.21±0.18
D-CoRP (Full) 9.35±0.50 12.70±0.50 17.06±1.77 20.71±2.01 2.87±0.25 3.57±0.30

Basic
Graph
Pooling

DiffPool [30]
None 12.10±0.79 18.01±4.55 26.96±9.63 39.04±19.44 4.06±0.21 6.56±0.86

D-CoRP (Single) 8.55±0.17 11.83±0.60 16.32±2.44 20.39±2.32 2.99±0.20 3.75±0.18
D-CoRP (Full) 8.84±0.70 11.96±0.73 24.62±10.24 28.56±10.85 3.08±0.26 3.89±0.36

TopK [9]
None 11.05±0.69 13.23±1.11 27.49±9.42 37.61±10.82 6.14±3.62 6.70±3.42

D-CoRP (Single) 12.22±6.40 15.21±5.72 19.88±8.72 24.10±9.11 2.73±0.20 3.78±0.10
D-CoRP (Full) 13.98±4.46 16.34±4.48 30.13±8.31 35.16±9.36 2.84±0.20 3.58±0.28

Table 1: Performance of D-CoRP on Baselines. Underlines indicate local
optimal comparing None (D-CoRP), D-CoRP (Single) (added to a single GNN
block), and D-CoRP (Full) (added to all GNN blocks). Underlines indicate opti-
mal results of corresponding baselines and bold indicates global optimal results.

3 Experiments and Results

3.1 Task and Datasets

We focus on brain age prediction as the primary task. Brain age is shown as
associated with brain network features [18,2], serving as an ideal benchmark for
model evaluation. The resting-state fMRI data from three datasets processed
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with Craddock 200 atlas [7] were used, in which the adjacency matrix consists of
Pearson correlation between time series across brain regions and region feature
comes from adjacency matrix (each row in the adjacency matrix stands for the
feature of corresponding brain region): 1) 1000 Functional Connectomes Project
(FCP) [3] (1,003 healthy subjects aged 18-85 yrs (mean 28±13 yrs, 569 females)).
2) Enhanced Nathan Kline Institute - Rockland Sample (NKI-Rockland) (393
subjects, mean 35±20 yrs, 164 females) [16,22], known for wide age range (4-
85 yrs). 3) Normal subjects (no diseases) from Attention-Deficit Hyperactivity
Disorder-200 (ADHD-Normal) (330 subjects, mean 12±3 yrs, 166 females) [6],
focusing on the younger group. All datasets are available in the UCLA multi-
modal connectivity database [4].

Fig. 2: Visualization of Refined Brain Network. One example of the brain
networks refined by D-CoRP and other denoising methods. This figure aims to
give a visualization of the important connections learned by D-CoRP compared
with other methods. (a): original brain network; (b): refined brain networks and
their differences from the original network.

3.2 Experiment Settings and Evaluation Metrics

We use two GNN blocks and a multi-layer perceptron (MLP) as the backbone
(see Supplementary for detailed structures). We used pooling methods (TopK
and DiffPool) with a pooling ratio of 0.25.

In section 3.3, to test the adaptability of D-CoRP, we plug it into 1) the
initial part of the model (D-CoRP (Single)), which refines the original brain
network; 2) every GNN block of the model (D-CoRP (Full)), which refines the

original and processed brain network. The Σ is set as IN2×N2 , µm is set as
1N2

20 ,
where 1N2 is N ×N matrix with value 1 in each place; T = 0.01, and β = 1. In
section 3.4, for D-CoRP: Efficient, r(m) is set as a fixed probability, 0.05.

All training is performed on an Nvidia A-100 with pytorch 2.1 and pytorch-
geometric package [8]. We choose Adam as the optimizer with a cosine annealing
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learning rate 1
10cos(

epochc

epochT
), where epochc stands for the current epoch number

counting from 0 and epochT stands for the training epoch set as 150. MSE is
used as the loss function. 5-fold cross-validation is applied to all datasets.

Two performance metrics are adopted for evaluation: Mean Absolute Er-

ror (MAE) and Root Mean Square Error (RMSE), i.e., MAE =
∑N

n=1 |yi−ŷi|
N ,

RMSE =

√∑N
n=1(yi−ŷi)2

N , where yi is the ground truth and ŷi is the predicted
value.

3.3 Performance of D-CoRP on Baselines

To test the applicability of D-CoRP, we tested the most widely used GNN base-
lines: GCN [12], GAT [23], GIN [29], and GraphSAGE [10]. Due to the impor-
tance of graph pooling methods in brain network research[24,11], we also tested
TopK pooling and DiffPool[9,30], known for their capability to distil subgraphs
from brain networks.

The experimental results (Table 1) show that D-CoRP significantly outper-
forms baseline models in all comparisons, supporting the effectiveness of D-
CoRP. Of note, with D-CoRP integrated, the backbones exhibit reduced stan-
dard deviations in the assessment metrics, suggesting improved stability. This
improvement is particularly relevant in brain network research due to data het-
erogeneity arising from demographics and acquisition. Our results also reveal
that adding D-CoRP to all the GNN blocks, i.e., D-CoRP (Full), however, does
not perform better in most cases, indicating over-compressed information.

FCP NKI-Rockland ADHD-Normal

Method Baseline MAE RMSE Time(s) MAE RMSE Time(s) MAE RMSE Time(s)

N/A-5%
GCN 18.62±4.27 30.22±7.36 170.76 55.35±10.44 82.12±24.45 47.87 11.42±5.86 22.21±6.52 67.72
GAT 21.30±2.88 46.66±2.98 168.96 44.43±7.46 62.27±8.69 53.32 16.32±2.42 20.78±3.11 69.91
GIN 21.80±2.32 25.99±2.57 171.49 30.69±3.46 38.33±4.21 55.62 9.45±2.95 15.74±4.01 70.10

SIB [31]
GCN 27.24±0.15 30.06±0.20 602.43 33.96±1.72 39.39±1.46 202.32 11.56±0.22 12.01±0.23 331.29
GAT 27.41±0.22 30.21±0.41 610.77 35.62±0.92 41.18±1.23 209.12 11.80±0.43 12.25±0.98 347.55
GIN 27.28±1.25 29.81±1.31 609.72 35.40±1.66 40.80±2.53 204.86 11.23±1.45 11.67±1.64 354.88

VIB-GSL [19]
GCN 8.66±0.40 13.90±0.58 570.16 16.44±1.88 21.02±1.63 110.91 4.66±1.68 5.73±1.54 180.77
GAT 11.10±0.94 17.10±0.85 578.66 16.69±1.43 22.01±1.43 114.86 4.55±0.76 5.55±0.75 182.63
GIN 12.54±0.46 17.78±0.61 570.70 30.58±1.71 36.33±2.02 114.10 8.92±0.80 9.66±0.79 180.75

D-CoRP: Efficient
GCN 11.50±0.96 16.66±0.98 181.66 34.23±1.33 41.07±3.17 54.43 5.57±1.36 10.68±2.01 78.20
GAT 12.96±2.07 20.41±4.65 182.53 36.71±1.93 41.53±2.42 60.55 2.53±0.41 2.96±0.44 82.22
GIN 11.76±1.08 16.22±1.16 188.34 16.59±0.77 20.00±1.00 56.33 9.66±2.01 15.93±3.08 83.12

D-CoRP
GCN 8.94±0.15 12.13±0.28 579.44 16.14±0.36 20.32±1.06 132.37 2.77±0.23 3.45±0.22 228.67
GAT 9.31±0.16 13.03±0.26 580.87 16.06±1.50 20.18±1.51 133.24 2.83±0.19 3.47±0.23 231.18
GIN 9.11±0.18 12.24±0.38 586.53 15.62±1.43 19.60±1.66 133.10 2.73±0.13 3.42±0.17 222.51

Table 2: Comparison of D-CoRP and Other Denoising Methods. The
bold font indicates the global optimal results for each dataset on MAE and
RMSE metrics. The time metric in the table shows the time to run the model on
5-fold cross-validation, and the bold font shows optimal results excluding N/A-
5%.
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3.4 Comparison with Other Denoising Methods

We compare D-CoRP and D-CoRP: Efficient with conventional denoising method,
selecting top 5% connections according to correlation values. We also compare
two IB-based graph structure learning methods, i.e., SIB [31], and VIB-GSL [19].
All comparisons involve three different backbones (i.e., GCN, GAT and GIN) as
the graph processing module.

From Table 2, we observe that D-CoRP outperforms other models in most
comparisons. In all cases, D-CoRP shows better stability over the comparison
models, indicated by lower variance. These results support the effectiveness of D-
CoRP for brain network research. Additionally, our results imply that D-CoRP:
Efficient may be more suitable for smaller datasets (e.g., ADHD-Normal).

(a) D-CoRP: Efficient (b) D-CoRP

Fig. 3: Results of Variant Temperature.

Further, we visualize an example network derived from the ADHD-Normal
dataset in Fig. (2). The results show that our methods effectively remove noisy
connections compared to other methods. Interestingly, from the refined network
from D-CoRP, we observe the modularity preserved in the functional network,
one of the most important brain network properties, suggesting the D-CoRP’s
capability to preserve informative edges alongside denoising.

3.5 Hyperparameter Tuning on D-CoRP

The temperature T controls the slope of sampling function F(P ,Π : T ), influ-
encing how effectively D-CoRP refines brain network connectivities. Six back-
bone models in Table. 1 are utilized to test the effectiveness of our D-CoRP.
10-fold cross-validation is performed on the FCP dataset. MAE is used to eval-
uate the final performance. Fig. 3 shows T value of 0.01 for D-CoRP may lead
to superior and stable model performance in more than half of cases and setting
T as 1 may be generally suitable for all cases. We recommend setting T as 0.01
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if only binary masking is needed while setting T as 1 if D-CoRP is also utilized
to adjust the importance of connections in addition to the denoised part.

4 Conclusion

In this study, we propose D-CoRP, a tool for differentiable connectivity re-
finement in functional brain networks based on information bottleneck theory.
Specifically, we design a differentiable sampling function and multivariate prob-
ability modeling for detecting valuable connections in the brain network. Our
experiments show that D-CoRP achieves state-of-the-art performance in connec-
tivity refinement. As a plugin, D-CoRP can be integrated into existing GNN-
based frameworks and provides an efficient mode for flexible adoption. Future
work will develop multivariate optimization with adaptive covariance tailored to
functional connectivity.

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.
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