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Abstract. Medical image classification is an essential medical image
analysis tasks. However, due to data scarcity of rare diseases in clinical
scenarios, the acquired medical image datasets may exhibit long-tailed
distributions. Previous works employ class re-balancing to address this
issue yet the representation is usually not discriminative enough. In-
spired by contrastive learning’s power in representation learning, in this
paper, we propose and validate a contrastive learning based framework,
named Balanced Parametric Contrastive learning (BPaCo), to tackle
long-tailed medical image classification. There are three key components
in BPaCo: across-batch class-averaging to balance the gradient contri-
bution from negative classes; hybrid class-complement to have all classes
appear in every mini-batch for discriminative prototypes; cross-entropy
logit compensation to formulate an end-to-end classification framework
with even stronger feature representations. Our BPaCo shows outstand-
ing classification performance and high computational efficiency on three
highly-imbalanced medical image classification datasets. The source code
is available at https://github.com/Davidczy/BPaCo.

Keywords: Long-tailed · Contrastive learning · Medical image classifi-
cation.

1 Introduction

Deep neural networks have achieved remarkable success in medical image anal-
ysis tasks, such as disease diagnosis [1] and lesion detection [14], benefiting from

https://github.com/Davidczy/BPaCo


2 Anonymous

large-scale, balanced, and high-quality labeled data. However, for some rare dis-
eases, it is challenging to collect comprehensive datasets. Consequently, the ac-
quired medical image datasets may exhibit long-tailed distribution patterns [19],
where head classes dominate most data and tailed classes have only a few samples
(Fig. 1). Deep models trained on such imbalanced data typically perform poorly
on balanced testing data, especially for rare classes. Addressing this issue and
improving the recognition performance with imbalanced data present significant
challenges for modern deep learning methods. To tackle this problem, early meth-

ISIC2018 APTOS2019 OCTA500

Fig. 1. Long-tailed distributions of the ISIC2018, APTOS2019 and OCTA500 datasets.
The imbalance ratio is computed as Nmax/Nmin, where N is the number of samples
in each class.

ods mainly focus on class re-balancing [2,17], information augmentation [16,30]
and module improvement [6, 31]. Class re-balancing methods aim to adjust the
distribution of the training samples to achieve balanced data over all categories,
e.g., over-sampling on tailed classes [8] or under-sampling on head classes [23].
Even though the performance on tailed classes gets improved, such techniques
sacrifice the performance on head classes, inducing a performance seesaw [29].
Information augmentation methods seek to introduce additional information into
model training to improve a model’s performance in long-tailed learning, e.g.,
head-to-tail knowledge transfer [18, 27], knowledge distillation [11, 13] or data
augmentation [24, 28]. Benefiting from introducing additional knowledge, these
methods avoid sacrificing head classes’ performance while improving the tailed
classes’ performance. However, information augmentation methods require ad-
ditional training time and professional domain knowledge may be required.

Recently, methods aiming to improve network modules become the main-
stream solution to long-tailed tasks. In general, these methods modify different
modules of a model of interest to boost its performance, e.g., representation
learning for improving the feature extractor [6, 31], classifier designing for en-
hancing the performance [9] or decoupled training for promoting both the fea-
ture extractor and the classifier [20]. Since representation learning is the most
remarkable capability of deep models, supervised contrastive learning (SCL)
methods exhibit great potential, e.g., generalized parametric contrastive learn-
ing (GPaCo) [7] and balanced contrastive learning (BCL) [31]. Despite that SCL
achieves better performance than cross-entropy based supervision on large-scale
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classification problems, some recent works indicate that high-frequency classes
dominate SCL when representing imbalanced data, which may still lead to un-
satisfactory performance. BCL alleviates such issues by introducing in-batch
class-averaging, class-complement and logit compensation to attain a regular
simplex configuration, yet its performance is still restricted by its mini-batch’s
size. GPaCo relieves the performance degradation problem by introducing a set
of class-wise learnable centers, but it sacrifices the gradient contribution of the
in-batch samples by assigning a small weight to the in-batch loss.

Here, in this paper, we propose Balanced Parametric Contrastive learning
(BPaCo) to tackle the long-tailed medical image classification task, with out-
standing performance having been observed. Assisted by a well-designed BPaCo
loss and the cross-entropy loss’s logit compensation, BPaCo simultaneously im-
proves representation learning and classifier learning in an end-to-end manner.
Collectively, our main contributions are three-fold: (1) We analyze the space for
improvement in the BCL and GPaCo losses, and propose a novel BPaCo loss
with across-batch class-averaging to avoid the dominance of head classes. (2)
We combine the class-wise learnable parametric centers with the weights of the
linear classifier to form a more comprehensive hybrid class-complement module,
which provides different types of class-wise prototypes to enhance representa-
tion learning. (3) Through rigorous experimental evaluations on three medical
image datasets, we show that BPaCo exhibits better performance and higher
computational efficiency than various competitive baselines.

2 Methodology

2.1 Preliminaries

For a medical image classification task, we aim to learn a complex function
mapping ϕ from an input space X to a target space Y = {1, 2, ...,K}, where
K is the number of classes. The function ϕ is usually composed of an encoder
f : X → Z ∈ Rh and a linear classifier w : Z → Y. We here aim to learn a
good f for better performance in long-tailed classification through representation
learning.

2.2 Framework

The pipeline of our proposed framework is shown in Fig. 2. It consists of a
classification branch and a contrastive learning branch. Both branches are si-
multaneously trained and share the same feature extractor (encoder). Similar
to BCL, BPaCo is end-to-end instead of two-stage. We adopt two different aug-
mentation strategies for an input of interest. The two different views of the input
(v1 and v2) are fed into the same encoder to output the corresponding features
f1 and f2. After that, in the contrastive learning branch, f1 and f2 are both fed
into an MLP with one hidden layer to obtain representations z1 and z2. f1 is also
fed into an identity mapping (IM) module to obtain the class-wise parametric
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Fig. 2. The overall framwork of BPaCo. It consists of a classification branch and a
contrastive learning branch. Both branches are simultaneously trained and share the
same feature extractor (encoder). C1 and C2 are different types of prototypes.

learnable centers C1 = {zc1 , zc2 , ..., zck}. z2 enqueues and dequeues the queue,
keeping in line with MoCo [10]. In the classification branch, f1 and f2 are con-
catenated and fed into a classifier to conduct cross-entropy logit compensation.
Since the weights of the linear classifier are co-linear with the class prototypes
to which the classes collapse [31], we can easily obtain the class-specific weights
ω1, ω2, ..., ωk. Those weights then go through a nonlinear MLP to obtain the cen-
ters C2 = {zc1 , zc2 , ..., zck}. Finally, the two sets of centers (C1 and C2) as well
as the representations of all samples in the mini-batch and the queue are used
to jointly calculate the BPaCo Loss LBPaCo. All representations going through
each MLP are ℓ2 normalized to ensure the feature space is a unit hypersphere.
In our framework, the BPaCo loss is the key to solve the long-tailed classifi-
cation problem, consisting of two important compositions, namely across-batch
class-averaging and hybrid class-complement. We now delve into their details.

2.3 Across-batch Class-averaging

SCL builds its basis on self-supervised contrastive loss by making use of the label
information. Although SCL allows class-wise gradient contribution, it cannot
prevent the dominance of head classes and is not applicable to long-tailed data.
To make SCL accommodate long-tailed data, BCL introduces in-batch class-
averaging to formulate the BCL loss as

LBCL = −
∑
i∈By

1

|By| − 1

∑
p∈{By\{i}}

log
exp (zp · zi)∑

j∈Y
1

|Bj |
∑

k∈Bj
exp (zk · zi)

, (1)

where By is a subset of B that contains all samples of class y. | · | stands for the
number of samples in a specific set. The key idea of in-batch class-averaging is
to average the instances of each same class in a mini-batch so that each class
has similar contribution during model optimization. However, such averaging is
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only based on in-batch representations, so the performance is strictly restricted
by the mini-batch’s size.

Our across-batch class-averaging overcomes the restriction of the mini-batch’s
size by introducing a queue in MoCo [10] to our framework. The queue enqueues
the new encoded representations and dequeues the older ones. All the encoded
representations in the queue and representations in the mini-batch are jointly
used to calculate the contrastive loss at each training epoch. The implementation
of across-batch class-averaging forms as follows

Lave = −
∑
i∈Ay

1

|Ay| − 1

∑
p∈{Ay\{i}}

log
exp (zp · zi)∑

j∈Y
1

|Aj |
∑

k∈Aj
exp (zk · zi)

, (2)

where Ay is a subset of A that contains all samples of class y and A is a com-
bination of in-batch representations as well as representations in the queue. Be-
low, following notations in preliminaries, we give the loss’s lower bound, which
guarantees on the optimality of model training, after performing across-batch
class-averaging.
Theorem 1. Assuming the normalization function is applied for feature em-
bedding, let Z = (z1, ..., zN ) ∈ ZN be an N point configuration with labels
Y = (y1, ..., yN ) ∈ [K]N , where Z = {z ∈ Rh : ||z|| = 1}, YA ⊆ [K] de-
notes the set of classes that appear within A. The class-specific batch-wise loss
after performing across-batch class averaging is bounded by

Lave(Z;Y,A, y) ≥
∑
i∈Ay

log(1 + (|YA| − 1)× exp(
1

|YA| − 1∑
q∈YA\{y}

1

|Aq|
∑
k∈Aq

zi · zk − 1

|Ay − 1|
∑

j∈Ay\{i}

zi · zj)).
(3)

Proof. See the Supplementary Material.
Assisted by the queue, our LBPaCo breaks the limitation of the mini-batch’s

size, achieving similarly excellent performance even under small batch settings
(See Table 3). To be more specific, BPaCo can perform contrastive learning
with in-the-queue representations that are obtained from previous batches, so
that near-optimal performance can be attained even with a mini-batch of a small
size, indicating its being computationally efficient.

2.4 Hybrid Class-complement

Even though across-batch class-averaging can maintain class-wise balance dur-
ing training, samples in the tailed classes still occupy only a small portion in
the queue, or even none in extreme data imbalance situations. To have all
classes appear in every mini-batch, we introduce hybrid class-complement for
balanced contrastive learning. We decouple the hybrid class-complement mod-
ule into class-wise parametric learnable centers C1 as a contrastive learning term
and linear classifier’s weights C2 as a logit compensation term. The logit com-
pensation term aims to eliminate the bias caused by the data imbalance and
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learn the rectification of the boundary [2]. There are various ways to implement
logit compensation, through the cross-entropy loss or the LDAM loss [2]. We use
cross-entropy logit compensation in our framework. Getting combined with Eq.
2 and hybrid class-complement, our BPaCo loss is formulated as

LBPaCo = −
∑
i∈Ay

1

|Ay| − 1

∑
p∈{Ay\{i}}∪{cy}∪{cy}

log
exp (zp · zi)∑

j∈Y
1

|Aj |
∑

k∈Aj∪{cj}∪{cj} exp (zk · zi)
.

(4)

After hybrid class-complement, we have the overall lower bound of LBPaCo.
Theorem 2. Let Z, Y be defined as in Theorem 1, if we have Ya = Y for every
A, the overall loss is given by

LBPaCo (Z;Y ) ≥ |D| log
(
1 + (K − 1) exp

(
− K

K − 1

))
, (5)

where D represents the whole dataset and K is the number of classes.
Proof. See the Supplementary Material.

From Eq. 5, the lower bound of our LBPaCo is a constant that is only related
to the number of classes and the size of the whole dataset but unrelated to the
number of samples in each class. By applying both across-batch class-averaging
and hybrid class-complement, we avoid the model’s preference to head classes.
Finally, when optimizing with cross-entropy logit compensation, we have the
following loss for training

L = Lce + βLBPaCo, (6)

where β is a hyperparameter that control the impacts of LBPaCo.

3 Experiment

Datasets and Evaluations. We conduct experiments on three publicly avail-
able datasets. The ISIC2018 [3] dataset is published by the International Skin
Imaging Collaboration (ISIC) organizers, which is a large-scale dataset of der-
moscopy images. The APTOS2019 [21] dataset is a fundus dataset from the AP-
TOS 2019 blindness detection competition. And the OCTA500 [15] dataset con-
tains multiple optical coherence tomography angiography (OCTA) modalities.
In our experiment, we only use the OCT en-face (Full) modality in OCTA500 to
perform long-tailed classification. We illustrate the distribution details of these
datasets in Fig. 1, and more details are provided in Table A1 of the supple-
mentary material. Following the experimental setup for long-tailed problems, we
split the original dataset into train and test sets with a ratio of 9:1 and maintain
balanced sample sizes for all classes in the test sets. All experimental results are
reported with the evaluation metrics of accuracy and F1-score.

As mentioned above, there are three main categories of methods for long-
tailed problems: class re-balancing (CR), information augmentation (IA) and
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Table 1. Comparisons with state-of-the-art methods. The best ones are bolded while
the second best ones are underlined. Keys: CR - Class Re-balancing; IA - Information
Augmentation; MI - Module Improvement; (◦ - resample) - training ◦ first and then
another classifier with balanced sampling.

Method Publication CR IA MI ISIC2018 APTOS2019 OCTA500
Accuracy F1-score Accuracy F1-score Accuracy F1-score

CE(baseline) - - - - 0.713 0.700 0.580 0.569 0.320 0.195
CE - resample [26] MICCAI’2022 ✓ - - 0.742 0.725 0.536 0.509 0.333 0.214

Focal loss [10] ICCV’2017 ✓ - - 0.781 0.748 0.660 0.632 0.383 0.204
LDAM [2] NeurIPS’2019 ✓ - - 0.752 0.715 0.593 0.580 0.278 0.124

Decouple-cRT [20] arXiv ✓ - ✓ 0.685 0.613 0.422 0.403 0.254 0.105
Decouple-τ -norm [20] arXiv ✓ - ✓ 0.699 0.654 0.431 0.407 0.255 0.102

MiSLAS [30] CVPR’2021 ✓ ✓ ✓ 0.800 0.798 0.464 0.430 0.200 0.071
ResLT [5] TPAMI’2022 - - ✓ 0.621 0.615 0.444 0.403 0.240 0.100
CL [10] CVPR’2020 - - ✓ 0.350 0.304 0.464 0.441 0.293 0.226

CL - resample [26] MICCAI’2022 ✓ - ✓ 0.600 0.602 0.460 0.452 0.267 0.108
SCL [22] NeurIPS’2020 - - ✓ 0.594 0.435 0.604 0.585 0.213 0.105
BCL [31] CVPR’2022 - - ✓ 0.786 0.786 0.660 0.654 0.400 0.214
PaCo [6] ICCV’2021 - - ✓ 0.715 0.702 0.596 0.517 0.240 0.149

GPaCo [7] arXiv - - ✓ 0.800 0.803 0.596 0.518 0.260 0.186
BPaCo (Ours) - - - ✓ 0.822 0.820 0.676 0.671 0.400 0.216

module improvement (MI). We select 14 representative methods as our com-
parison methods. The belonging and characteristic of each method are listed in
Table 1.

Implementation Details. We perform all experiments on a workstation con-
figured with eight NVIDIA RTX 3090 GPUs. The data augmentation policy is
RandAugment [4]. ResNet50 [9] is our backbone network. The batch size is 128
with an initial learning rate of 0.01 and the default optimizer is SGD with a
momentum of 0.999 and a weight decay of 1e-4. The input images are resized to
224 × 224 and the feature dimension is 128. Hyperparameters β is set to 0.25.
The training epochs are set as 1,000 for all datasets.

Comparison with State-of-the-art. We compare our proposed BPaCo with
14 state-of-the-art methods on all three datasets in Table 1. Apparently from that
table, our proposed BPaCo achieves the best performance on all three datasets.
Its accuracy outperforms the second best one by 2.2% and 1.6% respectively on
ISIC2018 and APTOS2019. For the OCTA500 dataset, BPaCo’s F1-score is 0.2%
higher than that of BCL even though they have the same accuracy. We also show
the influence of the mini-batch’s size on different contrastive learning methods
to establish the computational efficiency of BPaCo in Fig. 3. As shown in that
figure, our BPaCo achieves comparably high performance regardless of the mini-
batch’s size, which greatly reduces computational cost and avoids performance
loss. To be more specific, our BPaCo achieves 78.6% accuracy with a mini-batch
of size 64 while other methods need at least a mini-batch of size 128 to attain
comparable performance.

Ablation Study. Our proposed BPaCo has three fundamental components:
cross-entropy logit compensation, across-batch class-averaging and hybrid class-
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Fig. 3. The accuracy of contrastive learning methods with different mini-batch’s sizes
on ISIC2018. The red dash line represents BPaCo’s performance under a size of 64.

complement. To evaluate the effectiveness of each component, we conduct ab-
lation studies. Specifically, seven experiments are conducted by arranging and
combining these three components. As shown in Table 2, from the first three
rows, we demonstrate that using either across-batch class-averaging or hybrid
class-complement alone does not benefit the overall performance. From rows 4,
5 and 6, it is obvious that with the assistance of cross-entropy logit compensa-
tion, averaging and complement respectively boost the performance by 13.1%
and 13.0%. Finally, our proposed method attains the best performance in terms
of both accuracy and F1-score, as shown in the last row with all three elements
included.

Table 2. Effectiveness of cross-entropy logit compensation (Cross-entropy), across-
batch class-averaging (Averaging) and hybrid class-complement (Complement) in our
BPaCo framework on ISIC2018. The best ones are bolded while the second best ones
are underlined.

Cross-entropy Averaging Complement Accuracy F1-score
✓ 0.713 0.700

✓ 0.684 0.650
✓ 0.691 0.673

✓ ✓ 0.773 0.740
✓ ✓ 0.781 0.736

✓ ✓ 0.733 0.721
✓ ✓ ✓ 0.822 0.820



BPaCo: Balanced Parametric Contrastive Learning 9

4 Conclusion

This paper proposes BPaCo, a novel method addressing the long-tailed classi-
fication problem from a contrastive learning perspective. Our BPaCo consists
of three essential components: cross-entropy logit compensation, across-batch
class-averaging and hybrid class-complement. Extensive experiments on three
publicly available datasets exhibit the superiority of our framework in terms
of both performance and computational efficiency. BPaCo outperforms existing
SOTA long-tailed methods by large margins.

Disclosure of Interests. This study was supported by the National Key Re-
search and Development Program of China (2023YFC2415400); the National
Natural Science Foundation of China (62071210); the Shenzhen Science and
Technology Program (RCYX202106-09103056042); the Shenzhen Science and
Technology Innovation Committee (KCX-FZ2020122117340001); the Guangdong
Basic and Applied Basic Research (2021A-1515220131).
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