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Abstract. Accurate 3D modeling of the ventricles through cine car-
diovascular magnetic resonance (CMR) imaging benefits precise clinical
assessment of cardiac morphology and motion. However, the existing
short-axis stacks exhibit low spatial resolution in the inter-slice orien-
tation compared to the intra-slice direction, resulting in a sparse repre-
sentation of the realistic heart. The anisotropic short-axis images pose
challenges in directly reconstructing meshes from them. In this work,
we propose a surface fitting approach based on the algebraic sphere,
which serves as a previous step for various mesh-based applications, to
reconstruct a natural ventricular shape from the segmented wireframe-
type point cloud. Considering the sparse and layered nature of the point
clouds, we first estimate the normals of the point cloud based on dynamic
programming and neighborhood selection, followed by fitting a point set
surface using a non-compact kernel adapted by layers. Finally, an implicit
scalar field representing the signed distance between the query point and
the projection point is obtained, and the manifold mesh is extracted by
meshing zero iso-surface. Experimental results on two publicly available
datasets demonstrate that the proposed framework can accurately and
effectively reconstruct ventricular mesh from a single image with better
cross-domain generalizability.

Keywords: Wireframe-type point clouds · Mesh reconstruction · Alge-
braic Sphere · Point set surfaces · Cine CMR.

1 Introduction

Cine imaging is considered the primary approach among the imaging techniques
available in CMR. The imaging sequence employed in this study enables precise
visualization of vascular structures and facilitates the detection of ventricular
motion abnormalities. An accurate and holistic comprehension of cardiac struc-
ture and function is made possible by the 3D visualization of the heart. However,
rapid scanning of 3D+time short-axis stacks generally achieves high temporal
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resolution while exhibiting anisotropic spatial resolution, leading to reduced res-
olution in the out-of-plane orientation (Fig. 1a), making it difficult to accurately
and efficiently reconstruct the shape of the heart.

In the field of medical imaging, there has been recent interest in integrating
meshes to evaluate ventricular structures or functions. A common approach [1,
3, 5, 10, 26] involves creating template meshes and adjusting the weights of sta-
tistical shape models (SSMs) to match each case in the dataset. However, gen-
erating SSMs requires learning weights, and SSM-based methods may not fully
align with the contours of 2D images. Another approach [2, 6, 12, 17, 25, 26] in-
volves utilizing neural networks to learn vertex deformations of template meshes.
Kong et al.’s method [12, 13] is more suitable for isotropic CT data. Meng et
al. [17] employed high-resolution segmentation and linear interpolation to obtain
ground truth meshes, but their approach is limited to specific populations and
not applicable to diseased data. Additionally, high-resolution segmentation [18,
20, 22] can be used to describe the 3D shape of the heart, but it can only gen-
erate images at fixed resolutions. Deep learning-based methods often require
a number of high-resolution images or rely on meshes as ground truth. How-
ever, ground truth meshes are typically obtained through image interpolation
(Fig. 1d), super-resolution segmentation with post-processing methods such as
Marching cubes [16] (Fig. 1c), or derived from SSMs.

e. Oursd. Interpolationc. Marching Cubesb. A Graphics Methoda. Segmented Cine Image

Fig. 1. (a) Cine images offer only a sparse representation of the actual 3D heart.
(b) Proficient graphics method [9] for wireframe-type point clouds still falls short in
surface reconstruction. (c) Directly reconstructed meshes using Marching Cubes lack
guaranteed topology due to anisotropic data. (d) Interpolating information in each
layer results in poor mesh quality, with post-processing often leads to mesh shrinkage
and distortion. (e) Our method achieves accurate and efficient reconstruction of smooth
manifold meshes.

Our main focus is on the preliminary stage of mesh-based tasks, such as
the aforementioned segmentation, generation, and motion estimation, particu-
larly on the direct reconstruction of surface mesh from an individual CMR im-
age. We perceive the contour derived from the segmented image as a distinctive
wireframe-type point cloud, thereby formulating the problem as the reconstruc-
tion of surface mesh from wireframe. Decoupling segmentation and reconstruc-
tion offers enhanced interpretability and seamless integration of cutting-edge
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segmentation methods. Recently, extensive research has been conducted in the
field of computer graphics on surface reconstruction from point clouds. How-
ever, when dealing with the wireframe-type data which exhibits sparsity and
hierarchical characteristics, both deep learning-based [14, 23, 24] and geometry-
based [8, 9, 15] approaches yield unsatisfactory outcomes (Fig. 1b). To address
this shortcoming, we propose a novel method based on a key insight: the cardiac
surface is a smooth manifold. Leveraging this understanding, we develop a fit-
ting method based on algebraic sphere to rapidly reconstruct a smooth manifold
surface from the point cloud extracted from a single cine CMR image.

Our contribution has three folds. First, we tackle the challenge of recon-
structing mesh from an individual CMR image without requiring datasets or
training efficiently and accurately. Second, due to the special wireframe-type
data, we propose an algebraic sphere surface fitting framework and introduce a
layered adaptive non-compact kernel and a normal estimation method. Third,
our method outperforms existing method and demonstrates excellent general-
ization performance.

2 Methodology

Dynamic programming and 
smoothing normal extraction

(1) Normal Estimate

(2) Algebraic Sphere Fitting

Implicit field and 
zero iso-surface

meshing

Layered Adaptive Rational Kernel

⋯⋯ >
𝑐𝑐0

q0

S0(q0)

q1 𝑐𝑐1
q1

S1(q1)

q2

𝑐𝑐𝑘𝑘

q𝑘𝑘 ≈ q𝑘𝑘−1

Algebraic Sphere Sk(qk)

The iterative process of projecting each point onto the surface

query points 

input point cloud 
with normals

Algebraic Point Set Surface

The rational kernel has 
a higher probability in 
the tail region

Anatomical structures 
segmented from the 

input image

Output Mesh

query points: 
𝑞𝑞 

after projection:
�𝑞𝑞

weight function required 
for fitting

normals

Fig. 2. An overview of the proposed method. (1) To reliably drive the algebraic sphere
surfaces fitting, dynamic programming is employed to achieve rough meshing and Each
point in the point cloud calculates a principal normal based on its neighborhood. (2)
With algebraic spheres as local fitting primitives for projection using a rational kernel
as the weight function and the Algebraic Point Set Surfaces (APSS) [7] serving as
the underlying surface to recover large missing data, the proposed method extracts a
precise mesh from the zero iso-surface in the implicit field.
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Extracting point cloud P = {(pi, li)|pi ∈ R3, li ∈ {1, 2, . . . , L}}Ni=1 from a 3D
cine image, our method outputs mesh M representing the reconstructed heart,
where N is the number of points and L is the number of layers. We denote the
point cloud normals as {ni}Ni=1, which need to be estimated.

Algebraic Sphere Fitting. The main advantage of the sphere fitting is its
significantly improved stability in situations where planar moving least squares
fails. In contrast to geometric sphere fitting, algebraic spheres allows us to ele-
gantly handle planar areas or regions around inflection points as limits in which
the algebraic sphere naturally degenerates to a plane.

As is shown in Fig. 2, given a query point q ∈ R3, an algebraic sphere
S : R3 → R and projects q is continuously optimized onto the zero iso-surface of
S. Here the algebraic sphere S is a scalar field in R3 and its algebraic expression
is S(x) := u0 + u123x + u4x

⊺x to P, where u0 ∈ R, u123 ∈ R3 and u4 ∈ R
are respectively the constant, linear and quadratic coefficients of the sphere. For
simplicity, we denote u = (u0,u123, u4), and for a point q, u(q) is the solution
to the following optimization problem:

u(q) = argmin
u(q)

N∑
i=1

H(pi,q) · (S(pi)
2 + β∥∇S(pi)− ni∥2) (1)

where H(·, ·) is kernel function and β is a constant default 109.

Projection Process. The projection operation relies solely on local point
clouds, which enhances the scalability and enables parallel acceleration during
surface reconstruction. To retrieve the actual surface, one need to iteratively
project the query points onto the zero iso-surface of current algebraic sphere.
This process can be described as follows:

(q0 = q, S0 = S)
R1→ (q1, S1)

R2→ (q2, S2)
R3→ . . .

Rk→ (qk, Sk) (2)

where Ri projects qi−1 onto the zero iso-surface of Si−1, denoted as Ri : qi =
proj(qi−1, Si−1), Si is the algebraic sphere associated with qi, qk and Sk repre-
sent the projected point and algebraic sphere at the convergence of the projection
process. In practical scenarios, convergence to the surface can be achieved with k
as low as 10. Assuming the point q̂ is the projection of q onto the zero iso-surface
of S, proj(q, S) is represented as follows:

q̂ = proj(q, S) =


q− S(q)

∥∇S(q)∥
∇S(q), if u4 = 0

q− (r − ∥q− c∥) ∇S(q)

∥∇S(q)∥
, otherwise

(3)

where c = − 1
2u4

·u123 and r =
√

c⊺c− u0/u4 represent the center and radius of
S respectively.
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Finally, one can extract a surface by contouring the implicit function f(q) =

(q − qk) · nqk
, where nqk

= ∇S(qk)
∥∇S(qk)∥ . In practice, we use uniformly sampled

grid (Fig. 2.(2)) as query points for the purpose of meshing using the march-
ing cubes. The code is available at https://github.com/hejin9/algebraic-sphere-
surface-fitting.

Layered Adaptive Rational Kernel. The kernel function H(·, ·) plays a
crucial role in the reconstruction results as it reflects the weight of each point in
P with respect to the query point q. In previous works, commonly used kernels

include the Gaussian kernel H(x,y) = e−
∥x−y∥2

λ (which has compact support
and is suitable for dense data but fails for non-uniform sparse point cloud data)
and the rational kernel H(x,y) = (∥x − y∥2 − 1)2 (non-compact support, used
for sparse data). Although these methods perform well on typical data, they
often result in a planar reconstruction for the same layer of point cloud, making
them unable to handle the sparse and hierarchical point clouds extracted from
CMR (as shown in Fig. 1b, where even with the addition of long-axis point
clouds, a more accurate surface cannot be obtained). To address this, we have
customized a layered adaptive rational kernel specifically tailored for the data:

H(pi,q) = (∥pi−q∥2+ϵ)−
(|li−lc|−1)2+2

2 , where lc represents the layer label of the
point in P that is closest to the point q and ϵ is default 0.01. The kernel function
we designed combines the characteristics of distance and data anisotropy, taking
into account both the euclidean distance from the query point to P and the
layered neighborhood features.

Normal Estimate. The normal estimate is another key aspect, as the addi-
tion of normal makes algebraic-sphere-based fittings more robust. Due to the
anisotropic nature of point clouds, traditional normal estimation methods often
fail to achieve globally consistent and accurate normals, as referenced in the
supplementary materials. Our coarse-to-fine approach begins by using dynamic
programming to generate a roughly shaped triangular mesh and estimate the
approximate normals of the point cloud.

Meshing adjacent layers for the endocardium and epicardium of the left ven-
tricle is an independent and similar problem. Therefore, it is sufficient to design
a dynamic programming specifically for the endocardium of the left ventricle.
For two adjacent layers, with the number of points on the endocardium being
NU and ND respectively, let’s assume that each layer is sorted in counterclock-
wise order, denoted as {pU

i }
NU
i=1 and {pD

i }ND
i=1 respectively and points pU

1 and pD
1

represent the closest pair of points between the two layers. Due to the numerous
possibilities for triangulating the point clouds of the two layers, considering the
Delaunay criterion, we aim to minimize the total edge length of the triangulated
mesh. We design the states for dynamic programming as follows: F(i, j) repre-
sents the minimum total edge length of the triangulated mesh when connecting
pU
i and pD

j with an edge. The state transition is as follows:

F(i, j) = min{F(i− 1, j) + ∥pU
i−1 − pD

j ∥,F(i, j − 1) + ∥pU
i − pD

j−1∥} (4)
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, the initial state is F(1, 1) = ∥pU
1 −pD

1 ∥, and the terminal state is F(NU , ND).
By backtracking from the terminal state, we can obtain the triangulated mesh of
the adjacent layers (note that this coarse mesh lacks proper topology). We apply
Laplace smoothing to the mesh to better incorporate neighborhood features and
prior knowledge: the heart is a smooth manifold. The normals of the point cloud
are then determined by the normals of the nearest vertices on the mesh.

3 Experiments

In this section, we use Automated Cardiac Diagnosis Challenge (ACDC) dataset [4]
and Multi-Modality Whole Heart Segmentation (MMWHS) dataset [27] to bench-
mark our results. There are several experiments to evaluate the performance of
the proposed method. First, the accuracy in reconstructing 3D meshes is vali-
dated using synthetic data based on the MMWHS dataset. Secondly, the ACDC
dataset is used to evaluate the performance on real data. Lastly, the generaliz-
ability of the proposed method across various scenarios are explored.

3.1 Performance Evaluation of 3D Mesh Reconstruction

input point cloud

topological error reconstruction error reconstruction error
min

max

unfaithful reconstruction

Reference Mesh iPSR OReX OursVillard

Fig. 3. Visualized meshes reconstructed from the synthetic data based on MMWHS
dataset. The bottom row represents the reconstruction results.

To evaluate the accuracy of 3D mesh reconstruction, the MMWHS dataset
is utilized for its high-resolution and isotropic properties. We extracted point
clouds from the dataset, estimated normal consistency, and performed Poisson
Surface Reconstruction (PSR) [11] to obtain a manifold reference mesh(Fig. 3).
To simulate real cine images, layered wireframe-type point clouds are extracted
as input. For comparison, we implemented three distinct methods in our study:
iPSR [8], a geometry-based method; OReX [19], a learning-based method; and a
myocardial mesh reconstruction method that we have named Villard [21]. iPSR
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is an improved PSR, eliminating the need for point normals and employing an it-
erative approach. OReX, on the other hand, focuses on 3D shape reconstruction
solely from slices and incorporates a neural field as the interpolation prior. Vil-
lard, through iterative mesh deformation, Laplacian smoothing, and subdivision,
achieves the reconstruction of ventricular shapes.

Table 1. Comparison of other 3D mesh reconstruction methods based on simulated
degradation to assess the similarity between reconstructed meshes and reference meshes
using Chamfer Distance (CD), Hausdorff Distance (HD), Earth Mover’s Distance
(EMD), and Average Symmetric Surface Distance (ASSD) metrics (mean ± std). The
Dice Similarity Coefficient(DSC) were employed to measure the similarity between the
reconstructed meshes and input 2D contours per layer. Top performance of each col-
umn are in bold.

iPSR OReX Villard Ours

HD ↓ 18.268 ± 9.422 11.352 ± 4.626 3.710 ± 1.791 3.710 ± 1.458
CD ↓ 4.841 ± 1.643 2.169 ± 0.763 1.859 ± 0.687 1.701 ± 0.636
EMD ↓ 6.786 ± 2.201 3.261 ± 1.448 1.194 ± 0.399 1.189 ± 0.533
ASSD ↓ 2.446 ± 0.817 1.089 ± 0.384 0.930 ± 0.344 0.850 ± 0.318
DSC ↑ 0.673 ± 0.461 0.992 ± 0.004 0.974 ± 0.011 0.988 ± 0.005

Table 1 presents the quantitative evaluation results for 3D myocardial surface
reconstruction. Our method achieved the best performance in most metrics. Di-
rect application of iPSR, which doesn’t excel in processing partial missing point
clouds, did not yield satisfactory results in our specific application scenario.
OReX demonstrated the best performance in 2D similarity metrics (Table 1
and Table 2) as it faithfully preserved the original data. However, as depicted
in Fig. 3, the predicted 3D shape tends to exhibit topological errors such as
holes. This is attributed to OReX relying on signed distance fields for interpola-
tion without extrapolation capabilities. Villard showed similar quantitative and
qualitative results to our method. Nevertheless, as Villard is based on mesh de-
formation, significant reconstruction errors were observed, particularly in regions
where curvature varies greatly, as depicted in Fig. 3. Additionally, as revealed in
the third experiment, our method demonstrated suitability for a wider range of
data types compared to Villard.

3.2 Performance Evaluation on Real Data

The ACDC dataset was utilized to assess the performance on real-world data.
Since the dataset lacks mesh data and the first experiment already evaluated the
3D metrics quantitatively and qualitatively, we solely assessed the alignment of
the reconstructed mesh with the ground truth segmentation data on 2D slices.
Table 2 presents the quantitative results of myocardial surface reconstruction on
the real dataset, where our method showcases the best overall performance. As
mentioned earlier, OReX remains faithful to the original data but may exhibit
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topological errors in the 3D shape. Additionally, as evident from Table 2, gener-
ating a data with OReX remains time-consuming, whereas our method is much
faster in comparison.

Table 2. Real-world performance on ACDC training dataset. We present three metrics
(mean ± std): DSC, HD, runtime (seconds). Bold indicates the best performance and
the underline indicates the second best results.

iPSR OReX Villard Ours

DSC ↑ 0.774 ± 0.413 0.990 ± 0.005 0.982 ± 0.006 0.984 ± 0.007
HD ↓ 11.545 ± 20.919 0.447 ± 0.150 1.184 ± 0.163 1.156 ± 0.356

Time(s) ↓ 29.452 4428.292 10.379 8.485

3.3 Generalization Analysis

𝒕𝒕 = 𝟎𝟎 𝒕𝒕 = 𝟓𝟓 𝒕𝒕 = 𝟏𝟏𝟏𝟏 𝒕𝒕 = 𝟏𝟏𝟏𝟏 𝒕𝒕 = 𝟐𝟐𝟐𝟐

(a) Right Ventricle (b) Time Series

(c) High-resolution MRI (d) High-resolution CT

Fig. 4. Visualization of the versatility of our approach.

Fig. 4 demonstrates the versatility of our method, showcasing its applicability
to a broader range of scenarios. In fact, in addition to reconstructing the left
ventricle, we can also reconstruct the right ventricle, as shown in Fig. 4(a).
For cardiac motion tracking, we can visualize the entire sequence by directly
reconstructing mesh for each time frame. Furthermore, our method performs well
with images of varying resolutions, allowing us to reconstruct both MRI and CT
images. Additionally, it can generate complex shapes with ease. Furthermore, the
input, being a point cloud and lacking explicit topological connectivity, allows
our approach to adapt to various scenarios. As a result, our algorithm can be
directly used without fine-tuning any parameters for other chambers, cine, multi-
view inputs, and different disease morphologies. The details corresponding to
Fig. 3 and Fig. 4 are included in the supplementary material.
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4 Conclusion

To tackle the challenge of reconstructing 3D shapes from cine images, we pro-
posed an innovative algebraic sphere surface fitting method that facilitates effi-
cient and accurate mesh reconstruction. It is suitable for varying scenarios and
achieves high performance on both simulated and real-world datasets. The re-
construction of dense and accurate geometric shapes of the heart for each case
enables precise detection of myocardial locations exhibiting motion abnormali-
ties, satisfying the visualization and interpretability requirements in the medical
domain, and fostering further investigations into biomechanical analysis.
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