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Abstract. Disease progression prediction is a fundamental yet challeng-
ing task in neurodegenerative disorders. Despite extensive research en-
deavors, disease progression fitting on brain imaging data alone may
yield suboptimal performance due to the effect of potential interactions
between genetic variations, proteomic expressions and environmental ex-
posures on the disease progression. To fill this gap, we draw on the idea
of mutual-assistance (MA) learning and accordingly propose a fresh and
powerful scheme, referred to as Mutual-Assistance Disease Progression
fitting and Genotype-by-Environment interaction identification approach
(MA-DPxGE). Specifically, our model jointly performs disease progres-
sion fitting using longitudinal imaging phenotypes and identification of
genotype-by-environment interaction factors. To ensure stability and in-
terpretability, we employ innovative penalties to discern significant risk
factors. Moreover, we meticulously design adaptive mechanisms for loss-
term reweighting, ensuring fair adjustments for each prediction task.
Furthermore, due to high-dimensional genotype-by-environment inter-
actions, we devise a rapid and efficient strategy to reduce runtime, en-
suring practical availability and applicability. Experimental results on
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset reveal that
MA-DPxGE demonstrates superior performance compared to state-of-
the-art approaches, while maintaining exceptional interpretability. This
outcome is pivotal in elucidating disease progression patterns and estab-
lishing effective strategies to mitigate or halt disease advancement.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder that arises from a
complex interactions of genetic and environmental factors [14,20,22,7,6]. Under-
standing the genotype-by-environment interactions during disease progression,
especially in the predementia stages, is pivotal in elucidating disease spreading
patterns and devising effective strategies to mitigate or halt disease advance-
ment.

Brain imaging genetics has become a powerful tool for uncovering the genetic
underpinnings of intermediate brain phenotypes [13,3,21]. In the past decade,
several approaches, such as univariate, multivariate and bi-multivariate meth-
ods, have been introduced to explore the complex interplay between genetic vari-
ations and endophenotypes [16,15,10,17,8]. These cross-sectional methods may
have limitations in identifying risk factors, possibly due to the oversight of lon-
gitudinal imaging quantitative traits (QTs) that can capture the progression of
neurodegenerative disorders [10]. Meanwhile, evidence suggests that longitudi-
nal phenotypes are influenced by a combination of GE (Genotype-Environment)
interactions, thus, understanding the interactions along dynamically changing
trajectories can significantly contribute to disease progression prediction and
prompt explain heritability of AD [19,9]. However, most studies to date have
primarily focused on identifying genetic main effects, often neglecting poten-
tial GE interactions. Importantly, these non-additive effects could contribute
to intermediate imaging phenotypes, finally leading to disease occurrence, but
investigating GE interactions on longitudinal neuroimaging phenotypes poses
statistical challenges due to high dimensionality of genetic variations [11,2].

To address the aforementioned challenges, we propose a simple yet versatile
framework, MA-DPxGE. This is the first framework to achieve disease pro-
gression fitting with built-in interpretability. In particular, leveraging mutual-
assistance learning, MA-DPxGE incorporates an feature interaction module and
sparsity regularized modules into disease progression prediction framework, which
could enhance interpretability while preserving predictability. First, disease pro-
gression fitting is employed to model disease advancement using longitudinal
imaging phenotypes. The fitted disease progression is then correlated with ge-
netic variations, environmental factors and their interactions. Second, to iden-
tify biologically risk factors, we introduce an interpretable regularized module
that selects important features while eliminating inefficacious ones. Addition-
ally, we separate the effects of normal aging from the disease progression, aiding
in recovering the true relationship between GE interactions and disease-related
phenotypes. Considering the computational complexity of high-dimensional GE
interactions, we develop a fast optimization algorithm in spirit of divide-and-
conquer. Experimentals on real neuroimaging genetic data demonstrate superior
correlation coefficients and prediction performance compared to state-of-the-art
methods. This outcome holds great promise for advancing our understanding of
AD progression prediction and facilitating targeted therapeutic interventions.

The main contributions can be summarized as follows:
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• Drawing on the idea of mutual-assistance (MA), we propose a robust yet
practical disease progression prediction incorporating GE interactions, i.e, MA-
DPxGE, which benefits disease progression fitting and biomarker identification.

• We introduce feature-interaction module to identify biologically meaningful
genetic variations, environment as well as their GE interactions.

• We further extend our proposed approach to the chromosome-wide setting,
which significantly enhances the practical applicability of our method.

• We separate the normal aging effect from the disease trajectory. This sep-
aration ensures more accurate identification of risk factors. The results demon-
strate that MA-DPxGE attains superior performance in terms of biomarker iden-
tification and disease progression prediction, establishing a new state-of-the-art.

2 Method

2.1 Dataset

We obtain the SNPs and endophenotypes, including longitudinal imaging data
(Voxel-based morphometry (VBM) and FreeSurfer) of AD-related areas (left and
right Hippocampus, Parahippocampal, MidTemporal at baseline, Month 6, 12,
and 24), proteomics (146 proteomic markers), environmental factors (16 risk
factors such as age, visual and auditory impairment, body mass index, alco-
hol abuse, drug sensitivities, blood pressure, current smoking status, education,
gender, stroke, etc.), and genotyping data (10000 SNPs) from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database ( adni.loni.usc.edu )[15]. The
dataset consists 276 non-Hispanic Caucasian participants, including 39 healthy
controls (HCs), 182 individuals with mild cognitive impairments (MCIs), and
55 individuals with AD. Our aim is to build the disease progression and the
related genetic variations, proteomic markers, environmental factors, as well as
their interactions underpinning the progression.

2.2 The MA-DPxGE

Description As mentioned above, we draw on the idea of mutual-assistance
learning and accordingly and integrate disease progression and biomarker iden-
tification tasks into a whole, which could benefit both tasks mutually.

For ease of presentation, yij denotes the longitudinal imaging phenotype of
the i-th subject at time-point j. The SNPs are denoted as X ∈ Rn×p, proteins
and environmental exposures are denoted as Z ∈ Rn×q and E ∈ Rn×r. n is the
number of subjects, m is the times of time points. p, q and r represent the number
of SNPs, proteomics biomarkers and environmental exposures respectively. MA-
DPxGE constructs a disease progression model and incorporates the genetic
risk factors, proteomics markers, and environmental exposures by considering
both the baseline status (intercept) and the changing rate (slope) as responses.
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Therefore, the formulation of MA-DPxGE is as follows:

min
U,V,Q

n∑
i=1

m∑
j=1

∥∥∥a + xiu1 + xiQ1e
T
i + ziv1 +

(
b + xiu2 + xiQ2e

T
i + ziv2

)
tj − yij

∥∥∥2
2

+η

n∑
i=1

2∑
f=1

∥∥∥xiuf − zivf

∥∥∥2
2

+ Ω(U) + Ω(V) + Ω(Q)

(1)

U = [u1,u2] ∈ Rp×2 is the weight carrying the main effects of SNPs, V =
[v1,v2] ∈ Rq×2 carries the main effects of proteomic markers, Q1 ∈ Rp×r and
Q2 ∈ Rp×r is the interaction effects between SNPs and environment markers
with respect to intercept and slope respectively. f measures the number of in-
termediate phenotypes, i.e. intercept and slope. a and b are the intercept and
slope for normal aging effect. η is a nonnegative tuning parameter to balance
the influence of genotype-protein interactions and extract co-expression patterns
that contribute to progression prediction.

Motivated by sparse learning techniques, we use Ω(Q) = ∥Q∥1,1 =
∑

i

∑
j |Qi,j |

to identify interpretable genotype-environment interactions. Ω (U) and Ω (V)
control the sparsity of the main effects of genetics and proteomic markers. We
employ FGL2,1-norm ∗, ℓ2,1-norm, and ℓ1-norm to identify a small subset of
relevant SNPs at group and individual levels. Thus, Ω(U) = λu1∥U∥FGL2,1 +
λu2∥U∥2,1 + λu3∥U∥1,1. In addition, ℓ2,1-norm and ℓ1-norm are introduced to
identify meaningful proteomics expression, i.e. Ω(V) = λv1

∥V∥2,1 + λv2
∥V∥1,1,

where λv1
,λv2

are nonnegative tuning parameters. Consequently, our method
facilitates the tracking of disease progression while identifying the associated ge-
netic factors, encompassing both main and interaction effects. According to (1),
MA-DPxGE is multi-convex and thus can be optimized by alternating convex
search (ACS) strategy. We first fix V and Q and solve for U using gradient
descent, and then iteratively update each variable while treating the others as
constants. Through mathematical derivation, we deduce that MA-DPxGE has
a lower bound of zero, guaranteeing the convergence to a local optimum.
In general, neurodegenerative disorders often affect multiple brain areas, indicat-
ing that using a single imaging QT or treating multiple imaging QTs separately
may be inadequate for disease progression modeling. Therefore, jointly learn-
ing multiple disease progressions can enhance the predictive capability. How-
ever, treating all prediction tasks equally may not be optimal, as a simple fusion
strategy could prioritize easy sub-objective and neglect the optimization of more
challenging ones. To address this issue, we meticulously devise adaptive mecha-
nisms that facilitate loss-term reweighting, i.e. dynamic task balancing module.
This mechanism encourages the prioritization of challenging tasks within the
multiple prediction tasks, ensuring that they receive adequate optimization and
preventing the dominance of easier tasks.

Moreover, the direct application of MA-DPxGE to chromosome-wide or genome-
wide analysis poses challenges due to the computationally intensive of genotype
matrixs. To handle the high-dimensional SNPs and genotype-environmental in-
teractions, we partition them into L non-intersecting subsets, denoted as U =

∗∥U∥FGL2,1
=

∑p−1
i=1

√
∥ui∥22 + ∥ui+1∥22.
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⊕L
l=1U

l and Q = ⊕L
l=1Q

l respectively. L can be either user-defined or tuned
based on the data. Then, we adopt an effective strategy that avoids the direct
calculation of main and interaction terms, i.e, computing main and interaction
effects within each subset and then combine the results across all genotypes.
This approach considerably reduces the computational complexity. In the spirit
of divide-and-conquer principle, we reformulate MA-DPxGE as follows:

min
U,V,Q

n∑
i=1

c∑
k=1

m∑
j=1

Λk∥ak + interceptki +
(
bk + slopeki

)
tj − yikj∥

2
2

+η

n∑
i=1

c∑
k=1

2∑
f=1

∥∥∥xi

(
ufk1

⊕ . . . ⊕ ufkL

)
− zivfk

∥∥∥2
2

+ Ω(U) + Ω(V) + Ω(Q)

st. interceptki = xi

(
u1k1

⊕ . . . ⊕ u1kL

)
+ xi

(
Q11

⊕ . . . ⊕ Q1L

)
e
T
i + ziv1k,

slopeki = xi

(
u2k1

⊕ . . . ⊕ u2kL

)
+ xi

(
Q21

⊕ . . . ⊕ Q2L

)
e
T
i + ziv2k.

(2)

where Λk = − (1− pck)
γk log pck, ( pc, prediction criterion; we use correlation

coefficients in this work), which is inspired by the focal loss. c represents the
number of longitudinal phenotypic markers, γk is nonnegative tuning parame-
ters. This allows the model to dynamically prioritize challenging tasks during the
training process, as the more challenging target response prediction tasks con-
tribute more to the overall loss and are consequently assigned greater “weight”.
The matrix concatenation operator, denoted as ⊕, is used to represent the merg-
ing of SNPs and interaction terms. This decoupling enables parallel processing,
as SNPs and interaction terms can be independently processed. This approach
reduces memory requirements, as fast MA-DPxGE only needs to store small
SNP matrices during iterations.

Experiments To evaluate MA-DPxGE, we select most related state-of-the-art
models as benchmark methods, including (SMTR, G-SMuRFS and LMTFL)
[16,15,10,17]. SMTR and G-SMuRFS model cross-sectional brain imaging QTs
at different time points and calculates their average values. LMTFL models the
relationship between SNPs and longitudinal imaging QTs for all time points in
parallel. To adjust the parameters, we employ a nested 5-fold cross-validation
method, exploring a range of 10i (i = −3,−2, · · · , 0, · · · , 2, 3). The performance
of all methods are evaluated using correlation coefficient (CCC), root mean
square errors (RMSEs), and feature selection ability.

3 Evaluation and Results

3.1 Comparison with state-of-the-art

In Figure 1, we present the CCCs and RMSEs on testing data sets. A lower
RMSE and a higher CCC indicates better performance. It is evident that MA-
DPxGE outperforms the benchmark methods on both VBM- and Freesurfer-
derived data sets, i.e, the best average CCC and RMSE, with the smallest stan-
dard error. In addition, intercept and slope of hippocampus and midtemporal
(VBM) areas exhibit substantial difference (p < 0.05) among different diagnostic
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Fig. 1: The testing results in VBM and FreeSurfer (a). The CCC (mean ± std.)
(b). The RMSE (mean ± std.) obtained from 5-fold cross-validation.(c). Visu-
alization of intercept, slope estimated from qualitative examples. t-test between
diagnostic groups are presented. *: p < 0.05, **: p < 0.01, ***: p < 0.001.

groups [18,4]. This indicates the progression speed of endophenotypes is also an
important marker for distinguishing AD, MCI and HC. This would also explain
why considering disease progression are generally outperform by cross-sectional
methods, as the former explicitly models the morphological change between time
points. All these results highlight the effectiveness of the mutual-assistance learn-
ing module in fitting a more accurate disease progression trajectory.

3.2 Identification and Interpretation of Biomarkers

Accurately and comprehensively identifying underlying pathogenic factors is a
crucial objective in longitudinal brain imaging genetics. This endeavor not only
enhances our understanding of the disease’s pathogenesis but also facilitates the
development of effective treatments. To streamline the presentation, we focus on
showcasing the results from the VBM dataset.
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Fig. 2: (a). Weights (heatmap) of SNPs from five-fold cross-validation. (b).
Weights (heatmap) of proteomic markers from five-fold cross-validation. (1)
SMTR; (2) G-SMuRFS; (3) LMTFL; (4) Proposed.

Main effects: Figure 2a displays the weight coefficients of SNPs. Interest-
ingly, MA-DPxGE successfully identify several AD-risk loci, including the well-
known rs429358 (APOE), rs6857 (TOMM40), rs4420638 (APOC1), rs56131196
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(APOC1) and rs12721051 (APOC1) [12,5]. To test whether the selected SNPs
significantly affect AD, we conduct ANOVA to examine their main effects on the
diagnostic phenotype. As anticipated, all p-values reach the significance level (p
< 0.05). Due to FGL2,1-norm, meaningful groups of SNPs are identified, such as
rs4420638 (p = 1.89× 10−9 ∗), rs56131196 (p = 1.89× 10−9 ∗) and rs12721051
(p = 1.89 × 10−9 ∗) that locate in APOC1. These findings could be attributed
to and confirm the oligogenic or polygenic characteristic of AD.

In Figure 2b, our method successfully identify several AD-associated pro-
teomic markers, including ApoE, CRP, CgA, FGF-4 [12]. The heatmap in Fig-
ure 3 illustrates the interactions between SNP-protein pairs. Notably, the pair
(rs429358, APOE) demonstrates the highest correlation, consistent with es-
tablished findings regarding the strong association between Apolipoprotein E
(APOE) and rs429358. In contrast, the competing methods yield numerous ir-
relevant signals that could potentially introduce misleading information in subse-
quent analyses. These results highlight the superior performance of MA-DPxGE
in identifying credible AD-affected biomarkers.
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Fig. 3: Heatmap of pairwise correlation between top ten SNPs and proteomic
analytes, where symbol “×” indicates the significance level (p < 0.05).

Interactions effects: In addition to main effects, our method also uncov-
ers significant genotype-environment interactions. We present the top ten in-
teractions as follows. The interactions identified by the slope are (rs439401,
education), (rs59859410, education), (rs8106922, smoking), (rs157582, gender),
(rs157581, stroke). The intercept derived interactions include (rs8106922, age),
(rs1160984, motor), (rs73052335, stroke), (rs157582, stroke), (rs760136, blood
pressure). Firstly, we observe rs439401-education is associated with the slope.
Notably, rs439401 has been previously reported AD risk, and education is a im-
portant factor that could delay the onset of AD [1]. These interactions can pro-
vide promising evidence for precise diagnosis, because the co-occurrence of these
abnormalities may help clinicians be confident to diagnose at-risk individuals.
Meanwhile, rs1160984-motor is related to the rate of disease change, this might
be attributed to that exercise-induced elevation of brain-derived neurotrophic
factor is crucial for neuronal growth [11]. Further investigations into other in-
teractions may reveal novel GE interactions associated with AD risk and pro-
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id SVR NA DTB LFIL CCC↑ RMSE↓

(a) ✗ ✗ ✗ ✗ 0.17 ± 0.04 2.23 ± 0.12
(b) ✓ ✗ ✗ ✗ 0.19 ± 0.04 1.91 ± 0.10
(c) ✓ ✓ ✗ ✗ 0.20 ± 0.05 1.83 ± 0.08
(d) ✓ ✓ ✓ ✗ 0.21 ± 0.03 1.74 ± 0.09
(e) ✓ ✓ ✓ ✓ 0.23 ± 0.03 1.67 ± 0.08

Table 1: Ablation studies on main modules of different design choices. “SVR”
denotes sparse variable regularizer. “NA” is normal aging effect. “DTB” repre-
sents dynamic task balancing, “LFIL” means feature interaction learning. Bold
indicates the best result, ↑ means higher is better, and ↓ lower is better.

gression. We also remove feature interaction learning module from MA-DPxGE
(Table 1). No surprisingly, the best performance is achieved when both the main
and interaction effects of genotype and environment are considered, highlighting
the necessity of incorporating both aspects. These findings demonstrate that GE
interactions can yield interpretable biomarkers for AD progression prediction.

3.3 Ablation Study

We run ablation experiments to investigate the impact of main component on
Correlation and Prediction tasks.
Effect of sparse variable regularizer module: We employ CCCs and RMSE
as evaluation metrics to assess the performance. Table 1 presents the testing
CCCs and RMSE scores for all ablation studies. Notably, the absence of SVR
module results in inferior performance, underscoring the importance of incorpo-
rating SVR into predictive tasks. This suggests that the inclusion of irrelevant
features may negatively impact the model’s performance.
Effect of the normal aging effect module: Considering RMSEs and CCCs,
ablation results suggest that separating normal aging leads to a better fit for
disease progression. These findings can be attributed to the potential hindrance
caused by the normal aging effect on accurately modeling disease progression.
Effect of the dynamic task balancing module: Clearly, MA-DPxGE achieves
the highest average CCCs and smallest RMSE when incorporating the task
balancing module, showcasing its superior overall performance. The observed
improvement can be attributed to the suboptimal nature of treating all sub-
objectives equally. A simple fusion strategy might prioritize easier sub-objectives
while inadequately optimizing the more challenging ones.
Effect of the feature interaction learning module: Table 1 demonstrates
the superior performance of our method over baselines. This highlights the effec-
tiveness of feature interaction learning module. Additionally, our method excels
in interpretability, emphasizing the significance of identifying interpretable GE
interactions, which has the potential to explain the missing heritability of AD.
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4 Conclusions

This study proposes the first interpretable framework for disease progression pre-
diction, which can be applied to the diagnosis and prognosis of neurodegenera-
tive diseases, namely MA-DPxGE. Leveraging longitudinal imaging phenotypes,
experimental results demonstrate the superior performance of our framework,
accompanied by excellent built-in interpretability that supports the AD-specific
progression trajectory. Moreover, our method enhances the prediction and iden-
tification of main and interaction effects, carrying significant implications. Fur-
thermore, we extend the current task to a chromosome-wide setting and produce
strong baseline results. However, focusing on non-Hispanic Caucasian individuals
could lead to less generalisability and potential bias. In future endeavors, we are
working on collecting additional ethnicity, and conducting repeated grouping ex-
periments, to demonstrate general effectiveness under various biased conditions.
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