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Abstract. Automatic surgical phase recognition plays an essential role
in developing advanced, context-aware, computer-assisted intervention
systems. Knowledge distillation is an effective framework to transfer
knowledge from a teacher network to a student network, which has been
used to solve the challenging surgical phase recognition task. A key to a
successful knowledge distillation is to learn a better teacher network. To
this end, we propose a novel label-guided teacher network for knowledge
distillation. Specifically, our teacher network takes both video frames and
ground-truth labels as input. Instead of only using labels to supervise the
final predictions, we additionally introduce two types of label guidance
to learn a better teacher: 1) we propose label embedding-frame feature
cross-attention transformer blocks for feature enhancement; and 2) we
propose to use label information to sample positive (from same phase)
and negative features (from different phases) in a supervised contrastive
learning framework to learn better feature embeddings. Then, by min-
imizing feature similarity, the knowledge learnt by our teacher network
is effectively distilled into a student network. At inference stage, the dis-
tilled student network can perform accurate surgical phase recognition
taking only video frames as input. Comprehensive experiments are con-
ducted on two laparoscopic cholecystectomy video datasets to validate
the proposed method, offering an accuracy of 93.3±5.8% on the Cholec80
dataset and an accuracy of 91.6±9.1% on the M2cai16 dataset.

Keywords: Surgical phase recognition · Transformers · Label guidance
· Knowledge distillation · Cholecystectomy.

1 Introduction

Surgical workflow analysis is a key procedure in developing computer-assisted
intervention systems in modern operating room. Phase recognition, as one of
the most crucial tasks, not only helps provide timely context-aware assistance
and decision support during surgery [13], but also contributes to surgical video
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archiving, surgical training and surgical skill assessment [20], aiming to improve
the quality and safety of modern surgery. Considering the abundant and valuable
visual cues, compared to methods developed based on state signals [14], video-
based surgical phase recognition has become a more prevalent solution.

The past few years have witnessed the rapid development of deep learning-
based methods for surgical phase recognition, with a primary focus on temporal
modeling. EndoLSTM [18] utilized long short-term memory (LSTM) network
for temporal modeling. Jin et al. [8] proposed an end-to-end framework to train
ResNet[6] and LSTM simultaneously. Czempiel et al. proposed TeCNO [1], which
was developed based on multi-stage temporal convolutional networks. Recently,
several methods used Transformer [19] for phase recognition. Czempial et al. [2]
employed self-attention layers for temporal feature enhancement. Gao et al. [5]
employed transformer to aggregate spatial and temporal embeddings. Zou et
al. [25] proposed an auto-regressive transformer to model the inter-phase corre-
lation implicitly by conditional probability distribution. In addition, multi-task
learning methods were proposed to benefit from both phase recognition and tool
detection. Jin et al. [9] proposed multi-task correlation loss to exploit the rela-
tionship between both tasks. Tao et al. [15] designed latent space-constrained
transformers to learn semantic structure at video-level. Moreover, Liu et al. [11]
proposed key pooling operation to record the important key information for sur-
gical phase recognition. However, most of these methods only use ground-truth
labels to supervise the final predictions, without fully leveraging valuable label
information to establish feature-label correlation.

Knowledge distillation [7] has been proven to be a successful framework for
transferring knowledge from a teacher network to a student network. Both knowl-
edge distillation and teacher/student frameworks have been adopted to solve the
challenging surgical phase recognition task [23,24]. Yu et al. [23] trained a teacher
on a small dataset to generate synthetic annotations for a larger dataset, which
were then used for student training. Zhang et al. [24] performed self-knowledge
distillation by regularizing predictions of the student network to be consistent
with the soft labels generated by the teacher network, which is the best model
from past epochs. However, the soft labels have insufficient capacity to represent
the surgical workflow compared with the ground-truth labels, leading to limited
knowledge that the student network can learn from the teacher network.

In this paper, we proposed a novel label-guided teacher network for automatic
surgical phase recognition via knowledge distillation. To learn a better teacher,
we propose two types of label guidance in addition to supervision of final predic-
tions, taking both video frames and ground-truth labels as input. Specifically,
we introduce a label embedding-frame feature cross-attention transformer to es-
tablish correlation between ground-truth labels and feature embeddings, and a
supervised contrastive learning framework to regularize the low-dimensional fea-
ture embeddings by pulling together positive feature pairs from same phase and
pushing apart negative feature pairs from different phases. Benefiting from the
design of the label-guided teacher network, the correlation between feature em-
beddings and ground-truth labels is effectively enhanced. Then, the label-guided
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Fig. 1. A schematic overview of the proposed method, encompassing (a) the overall net-
work architecture trained through knowledge distillation, (b) the supervised contrastive
learning (SCL) framework, (c) the label embedding-frame feature cross-attention trans-
former (LFCT) block, (d) the frame feature self-attention transformer (FST) block, (e)
the self-attention layer in detail, and (f) the cross-attention layer in detail.

knowledge learnt by the teacher network is distilled into the student network
which takes only video frames to perform accurate phase recognition. In sum-
mary, the contributions of this paper are three-fold:

• We propose a knowledge distillation framework for surgical phase recogni-
tion, including a novel label-guided teacher network and a student network.
• We introduce a label embedding-frame feature cross-attention transformer

and a supervised contrastive learning framework to learn a better label-
guided teacher network, effectively enhancing the correlation between feature
embeddings and ground-truth labels.
• Comprehensive experiments are conducted on two publicly available video

datasets to validate the effectiveness of our method.

2 Methods

Fig. 1 (a) presents the overall network architecture of our method, comprising
a label-guided teacher network and a student network. The label-guided teacher
network is first trained to effectively exploit label information to provide valu-
able guidance, taking both video frames and ground-truth labels as input. Subse-
quently, utilizing a knowledge distillation framework, the label-guided knowledge
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learnt by the teacher network is transferred to a student network without label
input, taking only video frames as input for accurate surgical phase recognition.

2.1 Label-guided Teacher Network

The proposed label-guided teacher network consists of a visual feature extractor
(VFE), a temporal modeling module (TMM) and a linear classifier. For an input
video with N frames, let C denote the number of surgical phases. The ground-
truth labels can be represented as Y ∈ RN×C . We first trained a SwinV2-B [12]
as the VFE to extract D dimensional frame-wise visual features F ∈ RN×D from
all video frames for further temporal modeling. To learn a better label-guided
teacher network, apart from supervising the final predictions, we introduce two
types of label guidance in the TMM, comprising label embedding-frame feature
cross-attention transformer (LFCT) blocks for feature enhancement and a super-
vised contrastive learning (SCL) framework to learn better feature embeddings.

Label embedding-Frame feature Cross-attention Transformer. In the
teacher network, the TMM is constructed by four LFCT blocks, which are de-
signed to establish correlations between label embeddings and frame features
by explicitly incorporating label information using cross-attention. As shown in
Fig. 1 (c), each LFCT block has two input branches, a label branch and a fea-
ture branch, taking Y and F as input, respectively. Assuming the input feature
dimension of the i-th LFCT block (i ∈ [1, 4]) is Di, we follow [25] to generate Di

dimensional label embeddings with positional encoding in the label branch. Each
input branch uses a self-attention layer [19] for temporal modeling, resulting in
enhanced feature embeddings F ∈ RN×Di and label embeddings L ∈ RN×Di .
After that, to acquire label-guided knowledge, we propose using cross-attention
layer [19] to facilitate interaction between enhanced feature embeddings and la-
bel embeddings, taking F as the query (Q) and L as the key (K) and value (V).
Three linear projection matrices W q, W k, W v are applied to Q, K, V, respec-
tively, obtaining d dimensional vectors with 8 attention heads, where d = Di/8.
The label embedding-frame feature cross-attention can be calculated by:

Attn(Q = F,K = L, V = L) = Softmax(Mask(
FW q(LW k)

T

√
d

))(LW v) (1)

Both self-attention (Fig. 1 (e)) and cross-attention (Fig. 1 (f)) consist of a
masked multi-head attention layer and a feed forward layer, with skip connection
and layer normalization. Banded causal masks [15] are adopted to mask future
information while providing proper temporal dependency range. Finally, a linear
layer is used for dimension projection. The input feature dimension of the teacher
network is D, while the output feature dimensions for the four LFCT blocks are
D/4, D/16, D/4, D, in a down-sampling followed by up-sampling manner.
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Supervised Contrastive Learning. The limited visual difference between
different phases and the significant appearance variability within the same phase
post great challenges for accurate surgical phase recognition [8]. To meet these
challenges, inspired by [10], we introduce a SCL framework to regularize the low-
dimensional feature embedding space at the bottom of the teacher network with
label guidance. Different from self-supervised contrastive learning methods, we
sample the positive and negative feature pairs using label information, as shown
in Fig. 1 (b), aiming to bring features from the same phase closer while keep
features from different phases apart, in the embedding space.

Specifically, let ZT denote the D/16 dimensional output features at the bot-
tom of the teacher network. Taking an anchor feature ZTi with phase label Yi
and a sample feature ZTj

with phase label Yj (i 6= j) for example, we regard the
feature pair {ZTi

,ZTj
} to be positive if Yj = Yi. Otherwise, the feature pair is

considered to be negative if Yj 6= Yi. After that, we employ dot product to mea-
sure the similarity of the paired features. Therefore, the supervised contrastive
loss Lcon is computed by:

Lcon =
1

N

N∑
i=1

−1
|Pi|

∑
ZTj
∈Pi

log
exp(ZTi · ZTj/τ)∑

ZTp∈Pi

exp(ZTi
· ZTp

/τ) +
∑

ZTn∈Ni

exp(ZTi
· ZTn

/τ)

(2)
where Pi ≡ {ZTp ∈ ZT |Yp = Yi, p 6= i} and Ni ≡ {ZTn ∈ ZT |Yn 6= Yi} are the
collections of the positive and negative sample features for anchor feature ZTi

.
τ is the temperature. This design pulls together the positive pairs and pushes
apart the negative pairs by maximizing the similarities of the positive feature
pairs and minimizing the similarities of the negative feature pairs.

Training Objectives. For teacher network training, in addition to the super-
vised contrastive loss, cross-entropy loss weighted by median frequency balanc-
ing [4] is adopted to supervise the final predictions. Let λ denote the loss weight
for supervised contrastive loss. The overall loss can be written as:

Lall = Lce + λ · Lcon (3)

2.2 Knowledge Distillation

Considering that ground-truth labels are not available at inference stage, we pro-
pose a knowledge distillation framework to transfer the label-guided knowledge
learnt by the teacher network to a student network without needing any label
information. Therefore, by taking only video frames as input, the student net-
work can perform surgical phase recognition at inference stage. To this end, the
TMM in the student network is constructed by four frame feature self-attention
transformer (FST) blocks. Differing from the LFCT block, each FST block com-
prises two self-attention layers for temporal feature enhancement, as illustrated
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in Fig. 1 (d), with only feature branch. Finally, the feature dimension is also
transformed using linear layer. Note that the output feature dimensions for the
four FST blocks are identical to those for the four LFCT blocks in the teacher
network. Meanwhile, the VFE and linear classifier in the student network share
the same weights as those in the teacher network.

To distill the label-guided knowledge into the student network, we extract
feature embeddings at the bottom and end of the TMM and minimize feature
similarity between the teacher and student networks. Specifically, let ZS and
ZT represent the D/16 dimensional feature embeddings at the bottom of the
student and teacher networks, while ES and ET represent the D dimensional
feature embeddings at the end of the student and teacher networks, respectively.
The knowledge distillation loss for student network training is computed as:

Ldis =
1

N

N∑
i=1

‖ZSi −ZTi‖1 +
1

N

N∑
i=1

‖ESi − ETi‖1 (4)

2.3 Implementation Details

Our VFE is initialized with weights pre-trained on ImageNet [3] and then trained
for 100 epochs with 1e-4 learning rate. All video frames are resized to a resolution
of 192× 192 as the input of VFE. The dimension D of extracted feature embed-
dings is 1024. The teacher network is trained for 50 epochs with 5e-5 learning
rate. For knowledge distillation, the student network is trained for 50 epochs
with 1e-5 learning rate. We set λ to 0.1, τ to 0.07, and the bandwidth of banded
causal mask to 500. AdamW optimizer is used for training. In each iteration, all
frame features from a video are served as input. Our method is implemented in
PyTorch using one NVIDIA RTX A6000 GPU.

3 Experiments

Experimental Setup. The proposed method is evaluated on two publicly avail-
able cholecystectomy video datasets recorded at 25 frames per second (fps),
Cholec80 [17] and M2cai16 [16]. Cholec80 dataset contains 80 videos which are
categorised into 7 surgical phases and 7 surgical tools. We use the first 40 videos
for training and the rest 40 videos for testing. 8 videos in the training set are used
for validation and hyper-parameters tuning. M2cai16 contains 41 videos which
are categorised into 8 surgical phases. We use the first 27 videos for training and
the rest 14 videos for testing. 7 videos in the training set are used for validation
and hyper-parameters tuning. All videos are sampled to 1 fps for processing.

Following the previous work [5,15], to evaluate the phase recognition per-
formance of the proposed method, we adopt four types of evaluation metrics,
including the accuracy, precision, recall and Jaccard index.
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Fig. 2. Qualitative comparison results with SOTA and ablative testing results for the
key components.

Table 1. Comparison with the state-of-the-arts on Cholec80 and M2cai16 datasets.

Methods Cholec80 M2cai16

Accuracy Precision Recall Jaccard Accuracy Precision Recall Jaccard

EndoNet* [17] 81.7± 4.2 73.7± 16.1 79.6± 7.9 − − − − −
MTRCNet-CL* [9] 89.2± 7.6 86.9± 4.3 88.0± 6.9 − − − − −
LAST* [15] 93.1± 4.7 89.3± 5.5 90.1± 5.5 81.1± 7.6 91.5± 5.6 86.3± 7.5 88.7± 7.3 77.8± 10.1

PhaseNet [17,16] 78.8± 4.7 71.3± 15.6 76.6± 16.6 − 79.5± 12.1 − − 64.1± 10.3
SV-RCNet [8] 85.3± 7.3 80.7± 7.0 83.5± 7.5 − 81.7± 8.1 81.0± 8.3 81.6± 7.2 65.4± 8.9
OHFM [21] 87.3± 5.7 − − 67.0± 13.3 85.2± 7.5 − − 68.8± 10.5
TeCNO [1] 88.6± 7.8 86.5± 7.0 87.6± 6.7 75.1± 6.9 86.1± 10.0 85.7± 7.7 88.9± 4.5 74.4± 7.2
Trans-SVNet [5] 90.3± 7.1 90.7± 5.0 88.8± 7.4 79.3± 6.6 87.2± 9.3 88.0± 6.7 87.5± 5.5 74.7± 7.7
Not End-to-End [22] 92.0± 5.3 − 87.0± 7.3 77.1± 11.5 88.2± 8.5 − 91.4± 11.2 75.1± 10.6
Self-KD GRU [24] 93.2± 4.4 87.5± 7.4 86.9± 7.5 78.6± 9.0 − − − −
Ours 93.3± 5.8 91.3± 6.4 89.4± 6.3 80.6± 9.7 91.6± 9.1 90.6± 6.3 90.6± 4.7 80.6± 9.1

∗ denotes the multi-task learning methods that require both phase and tool labels.

Comparison with the state-of-the-arts. We compare the proposed method
with state-of-the-art (SOTA) methods on both Cholec80 and M2cai16 datasets,
including those designed for single-task and multi-task (requiring both phase and
tool labels). Quantitative comparison results are presented in Table 1. When
compared with the single-task SOTA methods, our method achieves the best
phase recognition performance, with an average accuracy of 93.3% on Cholec80
and 91.6% on M2cai16. Although the average recall of our method on M2cai16
is slighly lower than that of [22], our method outperforms [22] by a large margin
of 3.4% and 5.5% in terms of average accuracy and Jaccard index, respectively.
Even when compared with the multi-task SOTA methods, our method shows
comparable recognition performance to [15] on Cholec80, while outperforms [15]
on M2cai16 by 4.3%, 1.9%, and 2.8% in terms of average precision, recall, and
Jaccard index, respectively. We further present the qualitative comparisons, as
shown in Fig. 2, which can also demonstrate that the proposed label-guided
teacher network for knowledge distillation can help achieve superior surgical
phase recognition performance with more reliable predictions on both datasets.
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Cholec80 M2cai16

Fig. 3. Comparative analysis of predictions for challenging frames. GT: Ground Truth.

Table 2. Ablative testing results on Cholec80 and M2cai16 datasets.

Settings Cholec80 M2cai16

Baseline LFCT SCL CA Accuracy Precision Recall Jaccard Accuracy Precision Recall Jaccard

X − − − 90.9± 6.4 87.1± 8.7 87.9± 7.6 75.9± 9.6 88.2± 9.4 87.7± 6.1 87.9± 5.9 75.4± 8.9
X − X − 91.5± 6.7 88.3± 7.9 87.7± 8.5 76.6± 9.7 89.2± 10.4 88.5± 5.8 89.1± 4.8 77.4± 8.7
X X − II 92.1± 6.7 88.4± 8.3 89.0± 5.8 78.4± 11.8 89.0± 9.5 88.0± 8.0 87.0± 6.8 75.0± 11.9
X X − I 92.4± 6.6 90.1± 6.7 88.7± 6.7 78.9± 9.1 91.0± 9.7 90.4± 6.9 90.0± 5.4 80.1± 9.4
X X X II 92.8± 6.6 89.2± 8.0 89.8± 5.6 79.5± 10.8 91.1± 9.0 89.7± 7.0 88.3± 7.6 78.2± 10.4
X X X I 93.3± 5.8 91.3± 6.4 89.4± 6.3 80.6± 9.7 91.6± 9.1 90.6± 6.3 90.6± 4.7 80.6± 9.1

Ablation Study. We carry out ablation studies to investigate the effectiveness
of each key component, including the baseline student network, the LFCT block
and the SCL framework in label-guided teacher network. Table 2 presents the
ablative testing results on both Cholec80 and M2cai16 datasets. The baseline
model stands an independently trained baseline student network without knowl-
edge distillation. Note that only when LFCT is adopted, the proposed knowl-
edge distillation framework is used. On both datasets, one can observe that
when both LFCT and SCL are adopted, the model can achieve the best phase
recognition performance, which can demonstrate the effectiveness of the design
of our method. Besides, when LFCT is adopted to train a label-guided teacher
for knowledge distillation, an obvious performance boost can be observed com-
pared to the baseline model without knowledge distillation. In addition, we also
incorporate SCL at the bottom of the baseline model to investigate its effective-
ness. The results demonstrate that SCL improves the recognition performance
regardless of whether the knowledge distillation framework is used.

Furthermore, we conduct ablation studies to determine the proper setting
for cross-attention (CA) in LFCT blocks. Two settings are considered: I) taking
F as the query, and L as the key and value; II) taking L as the query, and
F as the key and value. The results show that setting I achieves better phase
recognition performance than setting II regardless of the adoption of SCL. This
indicates that setting I can provide more label-guidance knowledge for feature
enhancement, facilitating to learn a better teacher network.

Qualitative ablative testing results are illustrated in Fig. 2. One can see that
the proposed method can achieve more accurate and smoother phase predictions
compared to the ablative models. Moreover, we analyze phase predictions for
challenging frames containing limited visual information. As shown in Fig. 3, it
is obvious that the baseline model generates mis-recognized predictions while our
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method recognizes these challenging frames correctly, showing the significance
of the label-guided teacher network with knowledge distillation.

4 Conclusion

In this paper, we propose a novel label-guided teacher network for surgical phase
recognition based on knowledge distillation. We introduce label embedding-frame
feature cross-attention transformer and supervised contrastive learning to learn
a better label-guided teacher network. Experimental results on two publicly
available datasets demonstrate the effectiveness of our designs, showing supe-
rior phase recognition performance compared to SOTA methods.

Disclosure of Interests. The authors declare no conflict of interest.
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