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Abstract. Denoising diffusion models offer a promising approach to ac-
celerating magnetic resonance imaging (MRI) and producing diagnostic-
level images in an unsupervised manner. However, our study demon-
strates that even tiny worst-case potential perturbations transferred from
a surrogate model can cause these models to generate fake tissue struc-
tures that may mislead clinicians. The transferability of such worst-case
perturbations indicates that the robustness of image reconstruction may
be compromised due to MR system imperfections or other sources of
noise. Moreover, at larger perturbation strengths, diffusion models ex-
hibit Gaussian noise-like artifacts that are distinct from those observed
in supervised models and are more challenging to detect. Our results
highlight the vulnerability of current state-of-the-art diffusion-based re-
construction models to possible worst-case perturbations and underscore
the need for further research to improve their robustness and reliability
in clinical settings.

Keywords: Magnetic Resonance Imaging · Image Reconstruction · De-
noising Diffusion Models.

1 Introduction

Magnetic Resonance Imaging (MRI) is essential for medical diagnostics, espe-
cially for brain diseases, due to its detailed, non-invasive imaging capabilities.
However, MRI faces challenges like long acquisition times and high sensitiv-
ity to motion. Recent advancements, particularly denoising diffusion models,
promise to accelerate MRI by reconstructing high-quality images from under-
sampled data. Unlike traditional methods, these models can operate without
paired training data. However, our study reveals a critical vulnerability: suscep-
tibility to minimal worst-case perturbations, leading to significant inaccuracies
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in reconstructed images. Our research explores the robustness of diffusion mod-
els in MRI reconstruction, investigating adversarial perturbations and proposing
strategies to enhance resilience. We aim to advance reliable diffusion models in
clinical settings.

2 Related Works

2.1 DL-based end-to-end solution

Model-based image reconstruction methods consider imaging systems as a linear
operatorA that maps anatomical ground truth to the signal domain. Specifically,
a noisy observation y given by m sparse measurements can be defined as

y ∈ Rm = Ax+ ε, (1)

where x ∈ Rn is the unknown, A ∈ Rm×n (n > m) denotes an operator ran-
domly samples k-space data, and ε ∈ Rm is the measurement noise. When using
standard Cartesian acquisition, we can factorize operator A into an operator
P(Λ) and an invertible matrix T ∈ Rn×n that corresponds to Fourier transform:
A = P(Λ)T . K-space lines are selected during acquisition if Λii = 1 in P(Λ),
where Λ ∈ {0, 1}n×n is a diagonal matrix with tr(Λ) = m.

Given the rise of DL, it’s a natural flow to approximate the inverse model
using convolutional neural networks (CNNs). In the CNN formulation, one force
x to be well-approximated by the CNN reconstruction by using the following
objective:

min .
θ

λ
∥∥∥x− fcnn(AHy | θ)

∥∥∥2
2
+
∥∥∥Ax− y

∥∥∥2
2
. (2)

Here, we denote fcnn(· | θ) as a CNN parameterized by θ. The CNN reconstruc-
tion can be considered as resolving a de-aliasing issue in the spatial domain be-
cause AHy is severely affected by aliasing from sub-Nyquist sampling. However,
the performance of directly optimizing Equation 2 is inadequate since the CNN
reconstruction and the data fidelity are optimized independently. The CNN is
specifically trained to reconstruct the sequence without knowing the prior details
of the obtained data in k-space because it works purely in the image domain.

2.2 Bayesian image reconstruction

In the Bayesian picture, the MRI measurement y and tissue signal x are cou-
pled by a measurement distribution in this probabilistic formulation: p(y |x) =
qε(y − Ax), where qε(·) stands for the noise distribution. The conditional dis-
tribution p(y |x) represents a forward process of measuring y from x, which
is also described by the linear forward model (Equation 1). The reconstruc-
tion problem is then viewed as drawing samples from the posterior distribu-
tion p(x |y). In general, we can obtain such a posterior using Bayes’ theo-
rem: p(x |y) = p(y |x)p(x)/p(y). The following Bayes’ rule for score func-
tions results from taking gradients concerning x on both sides of this expres-
sion: ∇x log p(x |y) = ∇x log p(y |x) + ∇x log p(x). Note, the data prior term
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∇x log p(x) can be efficiently estimated by a denoising diffusion model [4, 13].
Incorporating measured observation ∇x log p(y |x) into our system is an essen-
tial step that transforms an unguided diffusion into a conditional one. In general,
one can add such a correction term to unconditional diffusion steps either via
approximating the likelihood gradient or directly performing closed-form data
consistency.

2.3 Reconstructing MRI using diffusion prior and posterior
sampling

Given a time-dependent diffusion-based model sθ∗(xt, t) that has been trained
to approximate the data score function via a diffusion process {xt}Tt=0 that was
produced by perturbing x with an SDE. The procedure of unconditional sam-
pling chooses a series of time steps and iterates by x̂ti−1

= h(x̂ti , zi, sθ∗(x̂t, ti)),
where function h represents an SDE solver and zi ∼ N (0, I). In MRI reconstruc-
tion, function h needs an additional step k prepended to itself to impose the
constraint implied by measurements, resulting in

x̂′ti = k(x̂ti , ŷti , λ)

x̂ti−1 = h(x̂′ti , zi, sθ∗(x̂t, ti)).
(3)

The above k function interacts with measured k-space entries and thus should
follow an image fidelity objective and a k-space consistency objective:

x̂′t = T−1
[
λΛP−1(Λ)ŷt + (1− λ)ΛT x̂t + (I− Λ)T x̂t

]
. (4)

3 Worst-Case Instabilities in MRI reconstruction

As demonstrated in Fig. 1, our worst-case noise is designed to be small in k-space
but can induce a significant mismatch in the slice recovered by the undersampled
version of the perturbed ground truth. Let f : Rm → Rn be a trained neural
network f mapping an undersampled measurement to an image. Finding an
adversarial direction δ ∈ Rm in the measurement domain can be viewed as
solving an optimization with the following objective:

max
δ:‖δ‖≤ε

Ey

[
‖f(y; θ)− f(y + δ; θ)‖22

]
. (5)

Here, we confine allowed perturbation sets to be a hypersphere l2 ball around
any y with a norm ε, i.e., ‖δ‖2 ≤ ε ‖y‖2. Following [1], a projected gradient
descent (PGD) method [7] was used to maximize the objective in Equation 5.

Both white- and black-box perturbations were evaluated in this study. In
a white-box scenario, we have full access to the target reconstruction model
θ and can perform gradient-based PGD attacks on its reconstruction. Second,
in the black-box setting, we tested the success rate of transferring the above
perturbations to the remaining models, e.g., diffusion-based reconstructions.
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PSNR: 31.5 PSNR: 28.9	(2.6 ↓)
SSIM: 0.93 SSIM: 0.60	(0.33 ↓)

+	0.01×

Original acquisition y Worst-case noise δy Adversarial example y + δy

=

𝑓!(𝑦) 𝑓!(𝑦 + 𝛿𝑦)

Unsampled K-space data 
from a brain MRI slice, 
along with its 
reconstruction recovered 
by a deep neural network. 

Frequency-domain 
perturbation computed 
by a projected gradient 
descent attack. 

Combined data of original 
k-space and the worst-case 
perturbation and its 
reconstruction from the 
same deep neural network.

Fig. 1: MRI reconstruction can be vulnerable to worst-case perturbations, which
add noise to the original k-space signal and manipulate the reconstruction pro-
cess of undersampled data. The resulting reconstructions can show false gray
matter structures that are difficult for humans to detect (see zoomed-in plots).

Algorithm 1 Worst-case perturbation in k-space
Require: A model with its current parameter θ: fθ; Loss function: L = −L2; Partially
measured k-space: ksp; Acquisition mask: M

Require: Adam Optimizer Opt; Perturbation strength: ε; Number of iterations: T ;
Learning rate: α; Constant c = 1e4
Initialize perturbation: δ ← δr + i · δi, where δr, δi ∼ N (0, I)
δ ← δ × ‖ksp‖‖δ‖×c
Initialize Optimizer: Opt← Adam(param = [δ], lr = α)
Get standard reconstruction: x← fθ(ksp�M,M)
for i in range(T) do

x̂← fθ((ksp+ δ)�M,M)
Opt.zero_grad()
loss← L(x, x̂)
loss.backward()
if ‖δ‖ > ε then

δ ← δ × ‖ksp|‖‖δ‖ · ε
end if

end for
return δ
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4 Experiments and Results

4.1 Data

All neuroimaging data were employed from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI), a multicenter, longitudinal study of 2,463 participants
between the ages of 55 and 90 who had or were at high risk of developing de-
mentia and Alzheimer’s disease. Each participant has gone through T1 weighted
structure MRI measured by Magnetization Prepared RApid Gradient Echo (MP-
RAGE) [8]. For our study, we utilized 80% of the dataset, corresponding to
1,970 participants and 13,651 scans, for training, and randomly selected 108
scans from the remaining 20% of ADNI participants (493 individuals) for test-
ing. Using 80% of the dataset for training and validation follows a standard 80-20
train-validation split, ensuring robust model evaluation.

4.2 Supervised baselines

CNNs have established a new state-of-the-art MRI reconstruction, vastly beyond
the traditional baselines. One typical approach utilizes auto-encoder architec-
tures, such as U-Net [12, 15], which solves the medical inverse problem in an
end-to-end fashion. We selected a Unet-based baseline (ResUnet++) as it is the
most widely used CNN backbone in MRI image reconstruction. In experiments,
we trained a ResUnet++ [5] model with a batch size of 16 and a learning rate
of 0.001, using 50 epochs on ADNI training set. Another branch of models such
as ADMM [14] and i-RIM [9, 10] generalizes the idea of iterative compressed
sensing reconstruction that unrolls the data-flow graph via a cascade of neural
networks. We selected i-RIM model due to its superior performance in vairous
MRI reconstruction challenges, especially, the FastMRI challenge [9, 6]. In our
experiments, the i-RIM model was trained using a batch size of 4 and a learn-
ing rate of 0.001 with 50 epochs. We trained both supervised models with an
acceleration factor of 8.

4.3 Denoising diffusion reconstruction

Our training method is similar to Song et al [13]. Since the Predictor-Corrector
(PC) sampler has generally higher performance for VE-SDEs, we employ it here
in place of the numerical SDE solver to generate samples. The corrector in this
PC sampler follows Langevin dynamics that solely rely on the scores, whereas
the predictor refers to a numerical solver for the reverse-time SDE. We perform
an additional data consistency [11, 13] step to adapt the PC sampler for solving
inverse problems. 1,000 noise scales and 1 step of the Langevin correction for
each noise scale were selected, resulting in a total of 2,000 steps of score model
evaluation in the PC sampler. Besides, the signal-to-noise ratio (SNR) η controls
the step size ε in Langevin dynamics. In our setting, η was set to 0.517 and the
λ in the data consistency operation was set to 1.0.
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Fig. 2: We designed experiments to evaluate the susceptibility of trained i-RIM
and ResUnet++ models to white- and black-box attacks (a and b).

4.4 Experimental design

First, we trained supervised and unsupervised models on reconstruction tasks in
the training cohort and evaluated the performance in the test cohort with three
acceleration schemes. We demonstrated diffusion models deliver comparable per-
formance to state-of-the-art supervised models while showing significantly better
generalization to unknown acquisition processes. Then, as demonstrated in Fig.
2, we assessed the robustness of the trained models against white- and black-box
adversarial perturbations. Both scenarios are important as a white-box attack
corresponds to malfunctions of an internal MRI system, while black-box per-
turbations reveal vulnerabilities of current deep-learning reconstruction towards
possible external adversarial interferences.

4.5 Quantitative and visual evaluation

Worst-case instabilities of supervised models. The results of our exper-
iments are presented in Fig. 3, which shows the SSIM loss as a function of
perturbation strength. Subplots c and d of Fig. 3 show the white-box perturba-
tions [3] obtained by attacking i-RIM and ResUnet++ models, respectively. We
found that both i-RIM (the blue line in subplot (a)) and ResUnet++ (the green
line in subplot (b)) are unstable and can be easily biased by tiny adversarial
perturbations.
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a b

Fig. 3: We visualized the impact of perturbation amplitude on model perfor-
mance, measured by the ∆SSIM metric. Subplot (a) shows that all models ex-
perienced a drastic drop in SSIM as the perturbation amplitude increased using
worst-case perturbations generated by i-RIM. Similar findings were observed
with adversarial perturbations via the ResUnet model, in (b).

Worst-case transferability to diffusion models. Empirical evidence for the
transferability of adversarial examples has been investigated in classification ap-
plications, but rarely demonstrated in regression tasks such as image reconstruc-
tion. In Fig. 2a, we explore a black-box scenario where adversarial perturbations
are generated against a surrogate model, such as an i-RIM, rather than the actual
models used for reconstruction, such as diffusion. Similar to supervised models,
as shown in Figures 3, the unsupervised diffusion model is also susceptible to
worst-case distribution shifts in the form of adversarial perturbations. Even with
a minimal adversarial perturbation of ε = 0.01 crafted from ResUnet++ param-
eters, the diffusion model distorts the gray matter structure in its reconstruction
(Fig. 4). This result is significant because diffusion models are trained similarly
to denoisers, as evidenced by the appearance of a Gaussian-noise-like artifact
when we adversarially perturb them (Fig. 4).

5 Conclusion

In summary, our study highlights the vulnerability of both state-of-the-art su-
pervised models and unsupervised diffusion models to adversarial perturbations
from the MRI signal domain. We found that worst-case perturbations can ef-
fectively transfer between independently trained regression models, similar to
the transferability observed in classification tasks. While diffusion models are
generally robust against anatomical and test-time distribution shifts, our find-
ings indicate that even tiny adversarial perturbations can cause these models
to generate fake tissue structures that may mislead clinicians. Furthermore, at
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deep neural network.

a

b

c

Fig. 4: To demonstrate, we crafted worst-case black-box perturbations [2] using
an independent ResUnet++ model and applied them to unsupervised diffusion
reconstruction and supervised i-RIM. The application of worst-case inference
to unsupervised reconstruction can create misleading artifacts in brain tissue,
which can be seen as red arrows in the subplot below.

larger perturbation amplitudes, diffusion models exhibit noise-like artifacts that
are distinct from those observed in supervised models and may be more difficult
for clinicians to detect.

We hypothesize that the main reason for this vulnerability is due to the
perturbed K-space misleads the reverse iterative diffusion process, creating non-
physical artifacts. Classical regularization techniques like total variance regular-
ization might offer better robustness in such scenarios.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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