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Abstract. The infant brain undergoes rapid development in the first
few years after birth. Compared to cross-sectional studies, longitudinal
studies can depict the trajectories of infants’ brain development with
higher accuracy, statistical power and flexibility. However, the collection
of infant longitudinal magnetic resonance (MR) data suffers a notori-
ous dropout problem, resulting in incomplete datasets with missing time
points. This limitation significantly impedes subsequent neuroscience and
clinical modeling. Yet, existing deep generative models are facing difficul-
ties in missing brain image completion, due to sparse data and the non-
linear, dramatic contrast/geometric variations in the developing brain.
We propose LoCI-DiffCom, a novel Longitudinal Consistency-Informed
Diffusion model for infant brain image Completion, which integrates the
images from preceding and subsequent time points to guide a diffusion
model for generating high-fidelity missing data. Our designed LoCI mod-
ule can work on highly sparse sequences, relying solely on data from two
temporal points. Despite wide separation and diversity between age time
points, our approach can extract individualized developmental features
while ensuring context-aware consistency. Our experiments on a large
infant brain MR dataset demonstrate its effectiveness with consistent
performance on missing infant brain MR completion even in big gap sce-
narios, aiding in better delineation of early developmental trajectories.

Keywords: Medical image generation · Infant brain development · Dif-
fusion model · Magnetic resonance imaging (MRI).

1 Introduction

The brains of human infants undergo dramatic morphometric and geometric
changes during early infancy. The total cerebral volume increases from about
30% to 80% of the adult size during the first two years after birth[3, 12]. Besides
global changes, local brain areas evolve more significantly[12, 7], laying foun-
dations for emerging cognitive and learning abilities[18]. Recent advancements
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more and more rely on the use of longitudinal magnetic resonance imaging (MRI)
to characterize growth trajectories[8, 23]. Compared to cross-sectional data, lon-
gitudinal MRI can unravel developmental trajectories, especially individual dif-
ferences in these curves, with elevated accuracy, statistical power, and analytic
flexibility[13]. However, longitudinal infant MRI faces enormous challenges due
to poor cooperation during scanning, heavy imaging noise and artifacts[12], even
subject drop-out during follow-up stages, resulting in missing data[26]. Com-
monly, the age interval of two data from the same infant is too large to reveal
dynamic and nonlinear developmental changes in-between. Moreover, the con-
trast of longitudinal infant brain MRI changes dramatically due to immature
myelination[5], further complicating data completion. The field calls for high-
fidelity image completion with accuracy for small brain structures that undergo
larger changes.

Deep generative models, such as generative adversarial networks (GANs) and
diffusion probabilistic models (DPMs)[6, 24], have achieved significant success in
the field of image generation. DPMs have particularly shown superiority in gener-
ating 3D medical images with rich details[2, 20, 19]. The pioneering studies have
attempted to use DPMs for longitudinal image completion[10, 4, 25], but this task
remains a cutting-edge challenge for infant brain. For instance, generating defor-
mation fields[10] relies on largely uniform deformation assumption, which does
not always hold true for infant brain MRI. Another longitudinal MRI completion
study relied on single guidance image[4], which might cause large distortions in
the infant scenario. Multiple guiding images will offer a better-controlled con-
dition for DPMs by explicitly using multiple past time points to predict future
data[25]. However, the sequence-aware transformer used was borrowed from a
video-based vision transformer[1], only suitable for extracting simple temporal
features from natural video frames but could fail in more complicated infant
MRI completion. Learning longitudinal sequence in early brain development is
not as simple as that used in video frame completion, an efficient yet power-
ful algorithm that can integrate spatiotemporal semantic information from very
sparse sequences is urgently needed.

This paper presents Longitudinal Consistency-Informed Diffusion model for
infant brain image Completion (LoCI-DiffCom). This novel algorithm can pro-
vide adaptive guidance to constrain a conditional DPM for generating high-
fidelity missing infant brain MRI data with any paired preceding and subsequent
time points of any interval. As the missing data bares dramatic temporal vari-
ations and large individual variability, we introduce a longitudinal consistency-
informed module that fuses two time-point data to achieve context-aware consis-
tency for carefully guiding DPM-based generation. As enormous spatiotemporal
information is involved, to adaptively adjust the significance of various seman-
tic features across spatial and channel domains, we incorporate light-weighted
channel-spatial attention[15] into DPM. Our method on completing the Baby
Connectome Project (BCP) dataset[8] demonstrates its efficacy in a sparse se-
quence scenario.



LoCI-DiffCom 3

Fig. 1. The overall architecture of our proposed LoCI-DiffCom (a) with Longitudinal
Consistency-Informed (LoCI) Fusion module (b) and a global attention mechanism
(GAM) (c).

2 Method

Fig. 1a illustrates the architecture of our LoCI-DiffCom. Specifically, a LoCI
module, detailed in Fig. 1b, is designed to fuse the preceding and subsequent
data to form conditions Cfused with context consistency for guiding diffusion
model generation. Then, Cfused is informed into the DPM via a global attention
mechanism (GAM, Fig. 1c) for modulating the importance of various semantic
information in the denoising network, enabling the better decoding.

2.1 Longitudinal Consistency-Informed Fusion Module

In conditional DPMs, the generated image largely depends on the congruence
and association between the conditions and the target. For infant early brain
development, the condition image may differ significantly from the target image
due to infants’ rapid developmental rate. Therefore, to accurately guide longi-
tudinal image generation, we design a LoCI fusion module to better integrate
images collected preceding (P ) and subsequent (S) to the missing time point,
resulting in semantic features Cfused with high relevance to the target. This
strategy also maximally utilizes existing data for high-fidelity image completion.

In Fig. 1a. P and S are initially encoded to extract their semantic represen-
tations. The encoder consists of n residual blocks and n two-fold downsampling
to get n pairs of encoded features of varied sizes, denoted as Pi and Si. In order



4 Z. Zhu et al.

to extract the individual’s developmental characteristics by integrating the se-
mantic features of preceding and subsequent time points, we input each set of Pi

and Si into the LoCI module (detailed in Fig. 1b). LoCI has a transformer-based
architecture with multi-head cross-attention, consisting of three Transformer en-
coders. The initially encoded features sequentially pass through the three cross-
attention transformers with their respective Q,K, V derived from fully connected
linear transformations. By switching Q to perform cross-attention, followed by
layer normalization and feed-forward network, the features from the preceding
time point gradually exchange information with those from subsequent time
point, with their commonality enhanced. After LoCI fusion, the initial features
turn into fused features with context-aware consistency CPi and CSi. To achieve
more accurate feature fusion, we minimize the Mean Squared Error (MSE) be-
tween CPi and CSi, aiming to reach common characteristics that represents
individual’s unique developmental traits with high relevance to the target. The
loss function, LLoCI , can be formulated as:

LLoCI = MSE(CP , CS) =
1

n

n∑
i=1

(CPi − CSi)
2, (1)

where n is the number of LoCI fusion modules. The output of the LoCI module
is CSi, which has already integrated information from preceding time point and
is then fed into a final Transformer encoder with self-attention, resulting in fused
conditions Cfused, as the guidance for the denoising network.

2.2 Hybrid Attention Mechanism in the DPMs

In the implementation of conditional DPMs, it is straightforward that the in-
dividual guidance image and the age information are encoded and then simply
concatenated, or directly added to the latent space, prior to the denoising pro-
cess. However, this approach may obfuscate features with different semantics.
Instead of doing so, we adopt a hybrid attention mechanism in the implemen-
tation of LoCI-DiffCom. That is, we embed the fused image feature Cfused and
the age information xmo using global attention and cross-attention, respectively.
As illustrated in Fig. 1c, the global attention mechanism (GAM) comprises a
lightweight channel attention mechanism and spatial attention. In channel at-
tention, a 4D permutation merges spatial dimensions and swaps their order with
the channel dimension, followed by a two-layer multi-layer perceptron (MLP)
with a channel reduction ratio r to extract a channel attention map. In spa-
tial attention, the original dimension permutation is first restored, followed by
two convolutional layers focusing on extracting an attention map for the spatial
dimension. This attention is capable of learning significant global information
by traversing dimensions across spatial and channel domains. For the age infor-
mation of the target image xmo, we learn the corresponding token, integrate it
with the time step, and use it as a query to compute cross-attention with pixel
features at both the encoder and decoder in the denoising network. As for the
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age tokens of the conditional images, they are simply added to the inputs of the
final LoCI module.

2.3 Model Training

The objective function of the conditional DPM is defined as follows:

Ldiff = E[||ϵ− ϵθ(xt; t, xmo, Cfused)||2], (2)

where ϵ represents a random Gaussian distribution, xt is the noised target image,
t represents the number of time steps for adding noise. Given that Cfused is the
input to the DPM, the objective function of the DPM Ldiff will optimize the
parameters of the LoCI fusion module θLoCI . However, LLoCI does not affect
the parameters of diffusion θdiff . Our network employs an end-to-end training
approach, allowing simultaneous optimization of both parts, formulated as:

L = Ldiff + λLLoCI (3)

Given the convergence rate of the LoCI module being greater than that of the
denoising network, λ can be selected to modulate the extent of optimization for
the LoCI module.

3 Experiments and Results

3.1 Dataset and Implemention

BCP Dataset In our study, we utilized a longitudinal infant MRI dataset from
Baby Connectome Project (BCP)[8], comprising a total of 170 infants aged 0-
26 months, with 655 T1-weighted structural MR scans. After rigorous quality
control, we randomly selected 584 scans from 154 infants for training and 71
scans from 16 different infants for testing. All data were preprocessed according
to a standard procedure[14]. Considering the computational cost, input images
were resampled to 2×2×2 mm3.

Implementation Details Our model is implemented using PyTorch[17] trained
on an Nvidia A100 GPU with memory of 80 GB. For diffusion, the noise level is
set from 10−4 to 5×10−3 linearly with 1000 steps. Adam optimization[11] is used
with a learning rate of 2× 10−4. During inference, denoising is performed with
80 skip steps across 1000 steps. The model in our experiment has n = 4 LocI
modules. λ = 0.6 is selected to modulate the optimization for LoCI. Channel
reduction ratio r = 4 in GAM.
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3.2 Results

Evaluation Metrics and Baseline Methods We choose several state-of-the-
art methods as baseline models for comparison: 1) GAN-based methods: Con-
ditional GAN[16] and Pix2Pix GAN[9], which use a UNet-based GAN model to
synthesize the missing image given a reference image as the condition, as well
as 2) Diffusion-based methods: Conditional DDIM[4] and SADM[25], which can
only utilize images from the previous time points to predict later time point.

Fig. 2. Qualitative comparison between baseline methods and our proposed LoCI-
DiffCom (a). Comparison of longitudinally generative performance, with the text on
the top-left representing conditional images utilized (b). Visual comparison and error
maps of different longitudinal consistency guidance. The bottom-right of the error map
represents SSIM score (c).
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Table 1. Quantitative comparison between baselines and our proposed LoCI-DiffCom.

Method PSNR SSIM Dice
WM GM

cGAN 23.73 0.794 0.642 0.629
Pix2Pix 24.01 0.796 0.643 0.622
DDIM 24.07 0.798 0.646 0.627
SADM 23.57 0.781 0.569 0.587

LoCI-DiffCom 25.52 0.845 0.656 0.650

The methods are compared using peak signal-to-noise ratio (PSNR) and struc-
tural similarity index measure (SSIM). Furthermore, we evaluate the fidelity
of the generated images. Specifically, we employ infant-dedicated brain MRI
segmentation[22][27][21] to parcellate brain gray matter and white matter us-
ing our generated images and use Dice coefficient to evaluate the segmentation
performance. A higher Dice score indicates that the generated image is more
reasonable.

Qualitative and Quantitative Comparisons In 2a, the subject has images
at 4, 7, 10, and 14 months. We selected the image from the 10 month mark as
the ground truth. The GAN-based method and conditional DDIM used a single
image at 7 months of age as guidance. SADM was guided by several preceding im-
ages at 4 and 7 months of age. Our LoCI-DiffCom utilized the images from both
7 and 14 months as guidance. As shown in Fig. 2a, our method outperformed
other methods in terms of image details and preserved more individual-specific
information. Quantitative evaluations are summarized in Table. 1. LoCI-DiffCom
outperformed GAN-based methods by 5%-10% and was slightly better than the
diffusion-based methods. It is worth noting that SADM’s results, with preced-
ing time points’ images as guidance, were even worse than those using only
one guidance image, largely due to the prominent structural diversity in early
development.

Since conditional DDIM performed best among the baseline methods, we
visually compare its generated longitudinal sequence with ours. The age(s) of
guidance image(s) is shown in the top left corner of each sub-figure in Fig. 2b.
Our model has better longitudinal consistency, showing a gradual grow-up trend.
However, the brain size of the images generated by the conditional DDIM varied
in an unreasonable manner.

Ablation Study We examined the impact of the number of our proposed LoCI
modules on the model’s effectiveness and quantitatively compared the image
quality and fidelity. As shown in Table. 2, LoCI (×4) achieves a 3% improvement
in SSIM compared to LoCI (×1). We also investigated the effectiveness of our
hybrid attention mechanism in the diffusion module. In both cases, our attention
mechanism showed a performance improvement.
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Table 2. Ablation studies of LoCI-DiffCom.

Method PSNR SSIM Dice
LoCI Attention WM GM
×4 ✓ 25.52 0.845 0.656 0.650
×1 ✓ 24.60 0.806 0.605 0.629
×4 25.05 0.830 0.661 0.647
×1 24.20 0.801 0.600 0.615

Fig. 3. The longitudinal growth trajectories of infant brain white matter volume.

Analysis of Longitudinal Consistency Guidance The quality of the gen-
erated image could highly depend on guidance selection. We investigated the
influence of different guidance selection strategies on the generated image by
applying images at different ages as guidance to both conditional DDIM and
our LoCI-DiffCom. As for generating image at 12 months of age, LoCI-DiffCom
with any pair of guidance images imputed data with higher similarities to the
ground truth in a highly robust manner (Fig. 2c). Conditional DDIM showed
large instability, particularly with guidance far from the target age, where the
generation quality was generally poor.

Performance on a Downstream Task: Delineating Developmental Tra-
jectory after Data Completion. We further assessed the fidelity of data
completion from a developmental neuroscience perspective by fitting the devel-
opmental trajectory of total white matter volume using a linear mixed-effect
model with a log-linear function. Fig. 3 demonstrates that the developmental
trajectory completed by our method is closer to that of the ground truth, while
SADM and conditional DDIM exhibit significant discrepancies with the ground
truth trajectory.
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4 Conclusion

We designed a novel conditional diffusion model, LoCI-DiffCom, aimed at com-
pleting missing infant brain images for better longitudinal studies. The proposed
consistency-informed module effectively merges conditions from preceding and
subsequent age time points and generates high-fidelity data that preserves lon-
gitudinal changes and individual variability. It is also highly stable in extreme
scenarios where the guiding images are far from the target. Our approach offers
a potential solution to complete missing data for more accurate developmental
neuroscience studies.
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