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Abstract. Source-Free Domain Adaptation (SFDA) is important for
dealing with domain shift without access to source data and labels of
target domain images for medical image segmentation. However, exist-
ing SFDA methods have limited performance due to insufficient super-
vision and unreliable pseudo labels. To address this issue, we propose
a novel Iterative Pseudo Label Correction (IPLC) guided by the Seg-
ment Anything Model (SAM) SFDA framework for medical image seg-
mentation. Specifically, with a pre-trained source model and SAM, we
propose multiple random sampling and entropy estimation to obtain ro-
bust pseudo labels and mitigate the noise. We introduce mean nega-
tive curvature minimization to provide more sufficient constraints and
achieve smoother segmentation. We also propose an Iterative Correction
Learning (ICL) strategy to iteratively generate reliable pseudo labels
with updated prompts for domain adaptation. Experiments on a public
multi-site heart MRI segmentation dataset (M&MS) demonstrate that
our method effectively improved the quality of pseudo labels and out-
performed several state-of-the-art SFDA methods. The code is available
at https://github.com/HiLab-git/IPLC.

Keywords: Source-Free Domain Adaptation · Segment Anything Model
· Heart MRI.

1 Introduction

Deep learning has achieved excellent performance in medical image segmenta-
tion, which plays an essential role in clinical applications like computer-aided
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diagnosis [11, 16, 17]. This success is highly dependent on the assumption that
training and testing data follow the same distribution. However, the distribution
gap (called domain shift) is widespread between training (i.e., source domain)
and testing (i.e., target domain) datasets in real-world clinical scenarios due to
different scanners, imaging protocols, image qualities, etc [8]. This gap between
the source and target domains usually leads to drastic performance degradation
when a model is deployed to an unseen target domain dataset [7].

Domain Adaptation (DA) that aims to address the domain shift between
source and target domains has been attracting increasing attention [10]. How-
ever, obtaining expert-level annotations is time-consuming and expensive, there-
fore, Unsupervised Domain Adaptation (UDA) methods are proposed to address
this issue with unlabeled target domain images and labeled source domain im-
ages [20,22,23]. Most existing UDA methods require access to source and target
domain images simultaneously for adaptation [15, 20]. However, due to privacy
and transmission concerns with medical images, the source domain images are
usually unavailable, which limits the application of UDA methods. This moti-
vates research of Source-Free Domain Adaptation (SFDA) methods that adapt
a pre-trained model to target domains without accessing the source data [1,3,5].

Recently, a few SFDA methods have been proposed. PTBN [12] uses Batch
Normalization (BN) with statistics recalculated on the batch at prediction time
to mitigate the effect of domain shift. However, only updating the BN layers can
not sufficiently address the domain shift, which leads to limited performance for
SFDA. TENT [19] adapts the model by minimizing the entropy of its predictions
in the target domain. SAR [14] uses a sharpness-aware and reliable optimization
scheme to minimize the entropy and its sharpness for adaptation. These methods
using entropy minimization as supervision can not provide sufficient constraints
for adaptation, which easily leads to over-confident yet incorrect predictions.
EATA [13] uses sample-adaptive identification and other methods [6, 18, 21, 24]
use auxiliary branches and pseudo labels for adaptation, which does not consider
the noise in pseudo labels, therefore, misleading the model adaptation. Existing
SFDA methods have limited performance due to the effect of insufficient super-
vision and unreliable pseudo labels, thus, it is significant to provide sufficient
constraints and obtain high-quality pseudo labels for domain adaptation. SAM-
Med2D [4] is a fine-tuned SAM [9] with medical 2D images that yields satisfac-
tory performance, which has the potential to generate reliable pseudo labels and
provide sufficient supervision for SFDA.

In this work, we propose a novel Iterative Pseudo Label Correction (IPLC)
guided by SAM framework to address the limitations of existing SFDA methods
for medical image segmentation. Our contributions are summarized as follows:
(1) With a pre-trained source model and SAM-Med2D, we propose Multiple
Random Sampling (MRS) and Entropy Weight Estimation (EWE) to obtain
robust pseudo labels and mitigate the noise of pseudo labels. Specifically, we
simultaneously use point prompts obtained from MRS and mask prompts ob-
tained from the model to generate pseudo labels through multiple inferences
by SAM-Med2D, which improves the robustness of pseudo labels. We calculate
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the entropy of predictions to weight pseudo labels for reliable supervision. (2)
We introduce mean negative curvature minimization for the edges of the model
predictions to provide more sufficient constraints and achieve smoother segmen-
tation. (3) We also propose the Iterative Correction Learning (ICL) strategy to
optimize the model with the supervision of pseudo labels and mean negative
curvature, which iteratively generates reliable pseudo labels from SAM-Med2D
with iteratively updated prompts from the model. This strategy can effectively
improve the quality of pseudo labels and achieve performance improvements for
source-free domain adaptation.

Extensive experiments on multi-site heart MRI segmentation showed that our
method can effectively improve the quality of pseudo labels and adapt the model
from a source domain to target domains. It outperformed several state-of-the-art
SFDA methods for medical image segmentation.

2 Method

The proposed IPLC framework is depicted in Fig. 1. With a pre-trained model
and SAM-Med2D, we simultaneously use point prompts obtained from MRS
and mask prompts obtained from outputs of the model to generate pseudo la-
bels through k-times inference by SAM-Med2D. Entropy-based weight maps are
calculated to assign weights to the supervision of pseudo labels. To provide reg-
ularization to the model, we minimize the mean negative curvature, which is
derived from the model’s edge detection result. Reliable pseudo labels are itera-
tively refined using updated prompts, enhancing the quality of pseudo labels for
adaptation.

2.1 Pre-trained Model and SAM-Med2D Model

Let fΘo be the model pre-trained with source domain images, and fΘs be SAM-
Med2D model [4]. D = {(xi, ), i = 1, . . . , N} represent unlabeled images in
the target domain. δS and δT are image distributions in the source and target
domain, respectively. Note that δS ̸= δT , and fΘs is frozen.

2.2 Multiple Random Sampling and Entropy Weight Estimation

Existing SFDA methods have limited performance due to the noise of pseudo
labels. Considering this issue, we propose Multiple Random Sampling (MRS) to
generate robust pseudo labels for SFDA, as shown in Fig. 1. To mitigate the
prediction noise of fΘo and provide sufficient constraints for fΘs , we simultane-
ously use point prompts obtained from MRS and mask prompts obtained from
outputs of fΘo to generate reliable pseudo labels for adaptation.

Specifically, for an input image x ∈ RH×W in the target domain, where H
and W are the height and width, respectively. We send it into fΘo to generate
a probability map po ∈ RC×H×W with C channels obtained by Softmax, where
C is the class number. Through argmax and one-hot conversion, we obtain the
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Fig. 1. Overview of our IPLC framework. We use k-th point prompts ℓk obtained from
multiple random sampling and mask prompts po to generate pks and then obtain pseudo
labels ỹs. W is the entropy-based weight map of ỹs obtained from p̄s. Based on the
supervision of LW−Dice and Lcurv, we use iterative correction learning for adaptation.

binary map of po. We random sample M points for each foreground class in the
binary map K times to generate K different 2D coordinates, which represent
point prompts. ℓk,c ∈ [N,N]1×M are the coordinates of k-th set of point prompts
for class c. We set the c-th channel of po as mask prompts for fΘs . The k-th
inference foreground probability map for class c obtained by fΘs is:

pk,cs = fΘs(x, pco, ℓ
k,c) (1)

where x is the target domain image, pco and ℓk,c are prompts for fΘs , pk,cs ∈
RH×W . The k-th inference probability map pks for x is obtained by concatenation
for the C-channels probability map. We then average the K different pks to obtain
the mean probability map p̄s and take the argmax across the class channel to
obtain the pseudo label p̃s:

p̃s = argmax(
1

K

K∑
k=1

pks) (2)

To mitigate the noise of p̃s, we propose Entropy Weight Estimation (EWE)
to weight pseudo labels with the entropy-based weight map of p̄s. The entropy-
based weight map is given by:

W(p̄s, C) =
log2 C − (−

∑C
c=1 p̄

c
s · log2 p̄cs)

log2 C
(3)



Iterative Pseudo Label Correction Guided by SAM for SFDA 5

where log2 C represents the maximum entropy of p̄s with C class segmentation.
Through Eq.(3), the weight map is normalized to [0, 1], where higher entropy
values are converted to lower weights. Formally, the weight-based Dice loss is
given by:

LW−Dice(po, ỹs,W) = 1− 1

C

C∑
c=1

∑H×W
n=1 2 · (Wn · pc,no ) · (Wn · ỹc,ns )∑H×W

n=1 Wn · (pc,no + ỹc,ns ) + σ
(4)

where ỹs ∈ {0, 1}C×H×W is a one-hot representation converted from p̃s and
σ = 10−5 is a small number for numeric stability.

2.3 Regularization based on Mean Negative Curvature

Pseudo labels ỹs have limited accuracy due to domain shift, directly using ỹs for
supervision would limit the model’s performance. Therefore, we introduce mean
negative curvature minimization to improve performance and achieve smoother
segmentation. The edge detection map of po for class c is given by:

pe,co = pco ⊗ Sobel (5)

where ⊗ represents 2D convolution operation, Sobel is the edge detection oper-
ator, we apply Sobel to each channel respectively and exclude the background
component. The curvature of pe,co is given by:

Vpe,c
o

=
(1 + Uy

2) · Uxx − 2 · Ux · Uy · Uxy + (1 + Ux
2) · Uyy

2(1 + Ux
2 + Uy

2)3/2
(6)

where Ux and Uy denote the derivatives of pe,co along the x-axis and y-axis,
respectively, and Uxx denotes the derivative‘ of Ux along the x-axis, etc. Loss of
curvature is given by:

Lcurν =
C−1∑
c=1

( 1

P

P∑
n=1

(
ReLU(−Vpe,c

o ,n)
))

(7)

where P is the number of Vpe,c
o

pixels, and C − 1 is the number of foreground
class. We use ReLU to retain the negative curvature of Vpe,c

o
. By minimizing the

mean negative curvature, we make Vpe,c
o

between neighboring pixels closer, which
reduces the roughness of the pe,co and achieves a smoother segmentation result.

2.4 Iterative Correction Learning for Adaptation

We propose the Iterative Correction Learning (ICL) strategy to optimize fΘo

for domain adaptation. This strategy iteratively generates reliable pseudo labels
ỹs from fΘs with iteratively updated prompts from fΘo and uses LW−Dice and
Lcurv as supervision, which can effectively improve the quality of ỹs and achieve
performance improvements for SFDA. The overall loss is summarized as:

Lseg = LW−Dice + αLcurv (8)

where α is the hyper-parameter that controls the weights of Lcurv.
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3 Experiments and Results

3.1 Experimental Details

Dataset and Metrics Our experiments used the public Multi-Centre, Multi-
Vendor, and Multi-Disease Cardiac Image Segmentation (M&MS) dataset [2].
The M&MS dataset was acquired from four different scanner vendors: Siemens
(Domain A), Philips (Domain B), General Electric (Domain C), and Canon
(Domain D), contains 192, 252, 150, and 100 cardiac MRI volumes, respectively.
We used domain A as the source domain, and B, C, and D as the target domains.
The target tissues for segmentation were the Left Ventricle (LV), Right Ventricle
(RV), and Myocardium (MYO). In the target domains, we randomly divided
the images into 70% for training, 10% for validation, and 20% for testing and
discarded labels for the training set. For quantitative evaluation of the results, we
adopted the commonly used Dice score and Average Symmetric Surface Distance
(ASSD). We implemented slice-level segmentation and stacked all the slices in
a volume into a 3D segmentation. As the slice thickness was large (9.2-10 mm),
we calculated ASSD values with unit of pixel.

Implementation Details We adopted classic 2D UNet [16] to demonstrate
the effectiveness of our method. The image intensity was linearly normalized
to [-1, 1] and each slice was center-cropped to 256×256. With the pre-trained
model fΘo in the source domain and SAM-Med2D [4] model fΘs , we optimized
fΘo for 20 epochs with Adam optimizer and a fixed learning rate of 10−4 for
adaptation. The segmentation class number was 4. The hyper-parameter K and
prompts setting were determined based on the training set of target domains,
which aims to generate more reliable pseudo labels than fΘo for adaptation.
The hyper-parameter α was determined based on the validation set. Specifically,
K = 10, α = 0.01, and the prompts mode were points & mask. All experiments
were implemented with PyTorch, using an NVIDIA GeForce RTX 3060 GPU.

3.2 Results of Source-Free Domain Adaptation

Comparision with Other Methods Our IPLC method was compared with
four state-of-the-art methods on the M&MS dataset: 1) PTBN [12] that uses
BN to mitigate the domain shift. 2) TENT [19] that uses entropy minimization
to adapt the model. 3) EATA [13] that uses sample-adaptive identification to
optimize the model. 4) SAR [14] that uses a sharpness-aware and reliable opti-
mization scheme to minimize the entropy for adaptation. We also compared our
method with two oracle methods: 1) Source only that the pre-trained model
is directly used for inference on the target domain images. 2) Target only that
training images with labels in the target domain are used to train the model
directly, without pre-training in the source domain. For fairness, all compared
methods were implemented using the same backbone of UNet [16].

The quantitative evaluation results are shown in Table 1. It can be observed
that “Target only” outperformed “Source only” substantially, showing the large



Iterative Pseudo Label Correction Guided by SAM for SFDA 7

Table 1. Quantitative comparison of different methods on M&MS dataset. Asterisks
indicate a significant improvement from the best values obtained by existing methods
(*: p ≤ 0.05, **: p ≤ 0.01). The best values are highlighted in bold.

Metrics Method Target domain B Target domain C Target domain D
LV MYO RV LV MYO RV LV MYO RV

Dice ↑
(%)

Source only 88.04±8.75 76.27±10.28 80.04±20.37 85.20±9.95 77.18±9.42 82.65±9.87 88.05±6.71 75.88±8.57 77.76±17.88
Target only 90.29±7.04 84.62±7.33 87.56±7.72 90.36±4.50 83.80±4.75 84.66±7.91 89.49±6.91 80.83±4.81 81.87±11.70
PTBN [12] 89.64±6.92 79.95±6.64 81.99±16.92 86.66±8.27 80.40±6.62 84.40±7.92 88.34±6.37 79.41±4.73 81.32±12.53
TENT [19] 89.03±8.45 79.86±6.51 83.67±11.49 85.17±10.83 78.78±6.76 84.61±7.07 84.16±11.17 79.15±3.90 82.17±9.69
EATA [13] 89.23±8.25 79.86±6.50 83.78±11.13 85.28±10.71 79.04±6.54 84.52±6.98 84.26±11.05 79.17±3.97 82.27±9.29
SAR [14] 88.99±8.57 79.92±6.50 83.63±11.72 85.12±10.88 78.83±6.73 84.70±7.01 84.16±10.90 79.04±3.98 82.03±9.86

Ours 89.63±6.16 81.93±6.21** 84.66±9.25 88.30±5.51* 82.24±6.23** 86.06±6.13* 89.34±5.69 80.99±4.89** 82.77±9.61

ASSD ↓
(pixel)

Source only 0.56±0.41 0.64±0.44 1.46±3.02 0.63±0.42 0.56±0.25 1.08±1.21 0.54±0.34 0.59±0.30 1.59±2.55
Target only 0.36±0.27 0.37±0.21 0.62±0.65 0.36±0.16 0.66±1.30 1.06±0.83 0.55±0.51 0.65±0.36 0.99±1.05
PTBN [12] 0.48±0.42 0.60±0.49 0.85±1.46 0.62±0.41 0.51±0.16 0.90±0.87 0.61±0.51 0.53±0.21 1.02±1.24
TENT [19] 0.60±0.70 0.62±0.53 0.67±0.95 0.70±0.63 0.59±0.24 0.87±0.69 0.90±0.78 0.60±0.28 0.63±0.37
EATA [13] 0.58±0.66 0.62±0.52 0.66±0.92 0.69±0.62 0.57±0.22 0.87±0.67 0.89±0.77 0.60±0.27 0.64±0.38
SAR [14] 0.62±0.73 0.62±0.54 0.67±0.98 0.70±0.64 0.58±0.23 0.85±0.68 0.91±0.79 0.60±0.28 0.64±0.39

Ours 0.41±0.22* 0.51±0.31** 0.59±0.60 0.48±0.24* 0.46±0.15** 0.62±0.45* 0.46±0.29 0.50±0.23 0.57±0.40

domain shift between the source and target domains. The existing SFDA meth-
ods only achieved a moderate improvement or even a decrease compared with
“source only”. In contrast, our method achieved excellent improvement and re-
markably outperformed the vast majority of SFDA methods in terms of Dice
and ASSD. For example, compared with “Source only” in target domain C, the
average Dice of LV, MYO, and RV obtained by our method was 88.30%, 82.24%,
and 86.06%, respectively, showing that our method improved the average Dice by
3.10%, 5.06%, and 3.41%, respectively. In terms of ASSD, our method achieved
the lowest pixel-wise ASSD across all tissues within each domain. A visual com-
parison between different SFDA methods is shown in Fig. 2. Note that “Source
only” achieved a poor performance, and the results of our method were closer to
the ground truth and smoother than those of the other methods.

(a) Image                                                                        

Left Ventricle (LV) Right Ventricle (RV) Myocardium (MYO)

(b) Ground truth  (c) Ours   (d) Source only (e) PTBN   (f) TENT  (g) EATA (h) SAR   

Fig. 2. Qualitative segmentation results of different methods. The three rows are from
domains B, C, and D of the M&MS dataset, respectively.



8 G. Zhang et al.

Table 2. Effectiveness of components in our IPLC method. The first row (baseline) uses
pseudo labels obtained by the source model for adaptation. LW−Dice: Generating SAM-
Med2D pseudo labels by MRS and EWE methods to supervise the model. Lcurv: Using
regularization based on mean negative curvature in adaptation. ICL: SAM-Med2D
pseudo labels are iteratively refined through continuously updated prompts in domain
adaptation.

Components Dice (%) ↑ ASSD (pixel) ↓
LW−Dice Lcurv ICL B C D Average B C D Average

83.74±9.29 84.42±6.39 83.63±6.58 83.93±7.42 0.54±0.45 0.55±0.29 0.55±0.31 0.55±0.35
✓ 83.69±12.47 85.43±6.51 83.52±8.81 84.21±9.26 0.77±1.74 0.54±0.31 0.59±0.57 0.63±0.87
✓ ✓ 84.15±10.81 85.50±6.31 84.00±8.39 84.55±8.50 0.70±1.51 0.53±0.31 0.55±0.47 0.59±0.76
✓ ✓ 84.98±6.69 85.49±5.87 83.15±6.66 84.54±6.41 0.52±0.35 0.53±0.27 0.61±0.40 0.55±0.34
✓ ✓ ✓ 85.41±7.21 85.53±5.96 84.37±6.73 85.10±6.63 0.50±0.37 0.52±0.28 0.51±0.30 0.51±0.32
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Fig. 3. Performance of our method with different hyper-parameters. (a) shows the
performance of SAM-Med2D pseudo labels on the training set with different random
sampling times K. (b) shows the effect of Lcurv weight α on the validation set.

Ablation Study As shown in Fig. 3, there are two important hyper-parameters
specific to our method: random sampling time K, and loss weight α. We first
investigated the effect of different K, and the performance in target domains is
shown in Fig. 3(a). It can be observed that K = 10 achieved the best perfor-
mance, which demonstrates the superiority of using MRS. Fig. 3(b) shows the
performance on the validation set with different α values and the best α was
0.01. To evaluate the effectiveness of components in our IPLC, we further in-
vestigated the effect of LW−Dice, Lcurv and ICL in Table 2. It shows that each
component of our method led to a performance improvement. The baseline ob-
tained an average Dice of 83.93%. Only using SAM-Med2D pseudo labels for
adaptation obtained the Dice of 84.21%, and additionally using the regulariza-
tion based on mean negative curvature or iterative correction learning improved
it to 84.55% and 84.54%, respectively. Our proposed method combining all these
components achieved the highest Dice of 85.10%.

4 Conclusion

In this paper, we propose a novel iterative pseudo label correction guided by
SAM framework to address the limitations of existing SFDA methods for med-
ical image segmentation. We propose multiple random sampling and entropy
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weight estimation that obtain robust pseudo labels and mitigate the noise of
pseudo labels. We introduce mean negative curvature minimization, which pro-
vides sufficient supervision for the model. We also propose an iterative correc-
tion learning strategy to iteratively refine SAM pseudo labels, which improves
the quality of pseudo labels for domain adaptation. Extensive experiments on
the public M&MS dataset demonstrate the effectiveness of our method, and our
method achieves excellent performance over several state-of-the-art methods.
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