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Abstract. Chest X-ray Differential Medical Visual Question Answering
(Diff-MedVQA) is a novel multi-modal task designed to answer questions
about diseases, especially their differences, based on a main image and
a reference image. Compared to the widely explored visual question an-
swering in the general domain, Diff-MedVQA presents two unique issues:
(1) variations in medical images are often subtle, and (2) it is impossible
for two chest X-rays taken at different times to be at exactly the same
view. These issues significantly hinder the ability to answer questions
about medical image differences accurately. To address this, we introduce
a two-stage framework featuring Coarse-to-Fine Granularity Contrastive
Learning. Specifically, our method initially employs an anatomical en-
coder and a disease classifier to obtain fine-grained visual features of
main and reference images. It then integrates the anatomical knowledge
graph to strengthen the relationship between anatomical and disease
regions, while Multi-Change Captioning transformers identify the sub-
tle differences between main and reference features. During pre-training,
Coarse-to-Fine Granularity Contrastive Learning is used to align knowl-
edge enhanced visual differences with keyword features like anatomical
parts, symptoms, and diseases. During the Diff-MedVQA fine-tuning, the
model treats the differential features as context-grounded queries, with
language modeling guiding answer generation. Extensive experiments on
the MIMIC-CXR-Diff dataset validate the effectiveness of our proposed
method. Code is available at https://github.com/big-white-rabbit/
Coarse-to-Fine-Grained-Contrastive-Learning.

Keywords: Differential Medical Visual Question Answering · Medical
Visual Question Answering · Change Captioning · Visual and Language.

1 Introduction

The medical community actively develops deep learning algorithms for Chest
X-ray data analysis, as seen in MIMIC-CXR [9], IU-Xray [11], and Chexpert [8].

https://github.com/big-white-rabbit/Coarse-to-Fine-Grained-Contrastive-Learning
https://github.com/big-white-rabbit/Coarse-to-Fine-Grained-Contrastive-Learning
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Such work includes disease classification [3], report generation [7, 14, 21], and
answering medically-related questions [2,12]. Among these, Differential Medical
Visual Question Answering (Diff-MedVQA) [6] aligns closely with radiologist
practices. It involves comparing current and prior Chest X-rays of the same pa-
tient to assess changes in anatomical structures and disease progression. This
necessitates a model capable of accepting the main image and reference image
as input, understanding the differences between them, and more importantly,
verifying whether these differences align with expectations based on the doctor’s
question. Despite Diff-MedVQA’s significant practical importance, this task has
not yet been extensively investigated by researchers. Fortunately, in the general
domain, Change Captioning [17, 22], which identifies differences between two
images, has inspired our work. Typical methods like Multi-Change Captioning
transformers(MCCFormer) [18] employ two identical image encoders to encode
features of the main and reference images, utilize a transformer to capture their
differences, and feed these differential features into a decoder to generate a cap-
tion. However, compared to general domain images, Diff-MedVQA faces two
unique challenges: (1) Changes in medical images are often subtle, meaning that
global image encoders such as ResNet [5] struggle to specifically capture the areas
of difference. (2) In Change Captioning, the two images are typically captured in
a single shot, ensuring an identical perspective. However, two Chest X-rays taken
at different times cannot have perfectly matching viewpoints, adding complexity
to the comparison of image differences.

To address these challenges, we introduce a two-stage framework with Coarse-
to-Fine Granularity Contrastive Learning. Initially, we obtain fine-grained visual
features of main and reference images using the anatomical encoder and the
disease classifier. Visual region relationships are enhanced using the anatomical-
symptom knowledge graph, followed by MCCFormer identifying the subtle visual
differences between the main and reference features. During the pre-training
stage, Coarse-to-Fine Granularity Contrastive Learning is used to align these
visual differences with keyword textual features such as anatomical parts, symp-
toms, and diseases, combined with Image-Text Matching and Masked Language
Modeling for text encoder training. In the Diff-MedVQA Fine-tuning stage, the
model uses the visual differential features as context-grounded query inputs, with
Language Modeling steering answer generation. Our contributions are summa-
rized as follows:

– We propose a novel two-stage training framework for Diff-MedVQA with
Coarse-to-Fine Granularity Contrastive Learning, demonstrating the feasi-
bility of aligning image differential features with textual features.

– This method employs an anatomical knowledge graph to model the relation-
ships between fine-grained anatomical features of Chest X-rays and corre-
sponding diseases, achieving more robust differential representations.

– Our approach achieves state-of-the-art performance on the MIMIC-CXR-Diff
[6] dataset, demonstrating the benefits of fine-grained contrastive learning
and anatomical knowledge graph enhancement.
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(1) Anatomical Knowledge Graph-Enhanced Visual Representation (2) Multi-Change Visual Difference Capture

(3) Coarse-to-Fine Granularity Contrastive Learning (4) Difference-Grounded Answer Generation
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Fig. 1. Overview of our framework, including Anatomical Knowledge Graph-
Enhanced Visual Representation, Multi-Change Visual Difference Capture, Coarse-to-
Fine Granularity Contrastive Learning, and Difference-Grounded Answer Generation.

2 Methodology

2.1 Problem Definition

Given a pair of Chest X-ray images Im, Ir taken at different times of the same
patient, Diff-MedVQA aims to generate an answer a for a given question q:

â = argminFθ(a | Im, Ir, q) (1)

Our framework comprises four steps: Anatomical Knowledge Graph-Enhanced
Visual Representation, Multi-Change Visual Difference Capture, Coarse-to-Fine
Granularity Contrastive Learning, and Difference-Grounded Answer Generation,
detailed in Figure 1 and subsequent sections.

2.2 Anatomical Knowledge Graph Enhanced Visual Representation

Diff-MedVQA has to handle Chest X-ray pairs that often vary in their imaging
angles. This variation renders differential features sensitive to pixel-level shifts
when employing identical image encoders for both images, thus complicating
the precise detection of anatomical symptoms or diseases. To obtain a more ro-
bust visual representation against varying perspectives, we introduced a Chest
X-ray anatomical knowledge graph, which contains each anatomical part and



4 X. Liang et al.

its potential corresponding symptoms. To construct this graph, we first used
FasterRCNN [20], pre-trained on the Chest ImaGenome [23], to detect anatom-
ical Regions of Interest (ROIs) and encode their features Fa = {fai ∈ Rd}ni=1,
with n representing the number of ROIs. Then, a ResNet pre-trained on VinDr-
CXR [15] is used to extract disease features Fd = {fdi

∈ Rd}ni=1 from these
ROIs for multi-label disease classification. Based on the anatomical location and
disease abnormality relationships provided by Chest ImaGenome, we construct
the Anatomical Knowledge Graph G = (E ,V). All anatomical location labels
and their corresponding disease labels are encoded into node features vi ∈ Rd

by the text encoder, resulting in V = {vi}Ni=1. Here, N represents the total
number of anatomical locations and diseases as detailed in [25]. If a disease is
present in a certain ROI, their relationship is represented by an edge ej , where
E = {ej}Mj=1, and M denotes the number of edges. A Graph Convolutional Net-
work (GCN) [10] is employed to model the Anatomical Knowledge Graph. The
graph convolution on can be expressed as:

H(l) = σ(ÂH(l−1)W(l)) (2)

Here, H(l) is the node feature matrix at layer l, with H(0) originating from node
embeddings V ∈ RN×d. The adjacency matrix A ∈ RN×N , from edge set E of
G, normalizes to Â. W(l) ∈ Rd×d is the learnable weight matrix for each layer,
and σ represents a non-linear activation function like ReLU. After 2 GCN layers,
node features H(l) are refined into angle-robust anatomical representations Fg ∈
RN×d. These are then concatenated with ROI and disease features Fa and Fd

to form the main and reference image representations, Fm and Fr, which reside
in R(2n+N)×d for difference capture.

2.3 Multi-Change Visual Difference Capture

To compare differences between main and reference images, we use a symmetri-
cal Multi-Change Capture Transformer (MCCFormer) to process the main and
reference visual representations Fm and Fr:

Fdiff = [MCCFormer(Fm,Fm − Fr);MCCFormer(Fr,Fm − Fr)] (3)

where [;] denotes concatenation. The MCCFormer can be expressed as:

MCCFormer(F1,F2) = MHSA(F1 +Epos1,F2 +Epos2) (4)

Here, Multi-Head Self-Attention (MHSA) utilizes positional embeddings Epos1

and Epos2 for the main and reference image visual representations to precisely
preserve the differences’ positional information.

2.4 Coarse-to-Fine Grained Contrastive Learning

Although difference features Fdiff ∈ RV×d, where V = 4n + 2N , capture the
visual discrepancies between image pairs, precise text generation necessitates
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modal alignment between vision and text. Therefore, we apply Coarse-to-Fine
Grained Contrastive Learning in the pre-training stage to enhance semantic
alignment between Fdiff and text features of keywords in answers, like diseases
and symptoms. Specifically, PubMedBERT [4] serves as the text encoder to
extract the feature Fk for each keyword, with W representing the number of
text tokens. Then, we average Fdiff and Fk to form the global features fdiff
and fk, and subsequently calculate their cosine similarity:

sg =
⟨fdiff , fk⟩
∥fdiff∥∥fk∥

(5)

Acknowledging that image pairs may correspond to multiple keywords, we use
a sigmoid function instead of the traditional softmax for logits computation
in image-text contrastive learning. Binary cross-entropy (BCE) is employed for
optimization. Consequently, the global contrastive loss is:

Lglobal = −
B∑
i=1

(yi log(σ(sgi)/τ1) + (1− yi) log(1− σ(sgi)/τ1)) , (6)

where B is the batch size, yi indicates the relevance of the keyword to the i-th
image pair, σ denotes the sigmoid function, and τ1 is the global temperature
parameter. Given that difference feature Fdiff contains varied anatomical parts
and disease information, with each part corresponding to different keywords,
global contrastive learning is insufficient to capture these nuanced relationships.
Therefore, we calculate fine-grained similarity between Fdiff and Fk:

s = FkF
T
diff (7)

where the similarity matrix s ∈ RW×V is employed to calculate the attention
score for the w-th token with the v-th differential feature:

awv =
exp(swv/τ2)∑V
k=1 exp(swk/τ2)

(8)

Here, τ2 is the temperature parameter. The context-aware differential represen-
tation is obtained by computing the weighted sum of differential features, with
weights given by the attention scores:

f ′
diffw =

V∑
v=1

awvFdiff,v (9)

Subsequently, we calculate the dot product between the context-aware differen-
tial representation f ′

diffw
and the keyword feature fk as the local similarity:

sli =
1

W

W∑
w=1

f ′
diffw · fk (10)

BCE loss also employed for local contrastive learning, is defined as:
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Llocal = −
B∑
i=1

yi log(σ(sli/τ3) + (1− yi) log(1− σ(sli/τ3), (11)

Finally, the coarse-to-fine granularity contrastive loss is combined, resulting in:

Litc = Llocal + αLglobal (12)

where α is a weighting factor set to 0.5.

2.5 Difference-Guided Answer Generation

In addition to Coarse-to-Fine Grained Contrastive Learning, multi-modal pre-
training tasks such as Image Text Matching (ITM) and Masked Language Mod-
eling (MLM) [1] are used in the pre-training to align visual differences with
keyword features. In the Diff-VQA fine-tuning stage, difference features serve as
cross-attention queries for encoding grounded questions and decoding answers,
with only autoregressive language modeling [19] used to train the Diff-MedVQA
model. This two-stage training approach of alignment and generation, proven
effective in many multi-modal tasks [13] for converting visual representations to
textual outputs, also demonstrates its efficacy in Diff-MedVQA.

3 Experiments

3.1 Dataset

Our training and validation experiments were conducted on the MIMIC-Diff-
VQA dataset [6], which is constructed based on the MIMIC-CXR dataset [9] and
focuses on question-answering regarding differences in chest radiograph reports.
This dataset comprises 164,324 image pairs and 700,703 questions. There are
seven types of questions, including Abnormality, Presence, View, Location, Type,
Level, and Difference. The distribution for training, validation, and testing is
8:1:1. Additionally, the organ and disease detectors used were pre-trained on the
Chest ImaGenome [23] and VinDr-CXR datasets [15], respectively.

3.2 Implementation Details

We utilize pre-extracted anatomical visual features from FasterRCNN [20] and
disease visual features from ResNet101 [5], both with dimensions of 26x1024,
which are then linearly transformed to 26x768. The anatomical knowledge graph’s
adjacency matrix is sized at 62x62, encompassing 24 anatomical parts and 38 dis-
ease abnormalities. MCCFormer [18] is composed of 2 layers with 4-head Multi-
Head Self-Attention, and both the Text Encoder and Decoder are initialized
with PubMedBERT. During the pre-training phase, the loss function includes
Coarse-to-Fine Grained Contrastive Learning, Image-Text Matching (ITM), and
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Table 1. Experimental results in MIMIC-Diff-VQA: MCCFormer, IDCPCL, and
EKAID results as reported in [6]. The baseline represents our implementation using
pre-extracted anatomical and disease visual features with MCCFormer.

Method BLEU1 BLEU2 BLEU3 BLEU4 ROUGE_L CIDEr METEOR

MCCFormer [18] 0.214 0.190 0.170 0.153 0.340 0.000 0.319
IDCPCL [24] 0.614 0.541 0.474 0.414 0.582 0.703 0.303
EKAID [6] 0.626 0.541 0.477 0.422 0.645 1.911 0.340

Baseline w/o pre-train 0.523 0.453 0.400 0.350 0.488 0.572 0.287
Ours 0.630 0.543 0.479 0.422 0.662 2.022 0.403

Masked Language Modeling (MLM). The batch size is set to 512. An Adam op-
timizer with an initial learning rate of 6e-6 and a weight decay of 1e-5 is used,
and the learning rate is halved every 5 epochs. During Diff-VQA fine-tuning,
we solely utilize the LM loss, maintaining a batch size of 512 consistent with
pre-training, and employ an Adam optimizer with an initial learning rate of 1e-6
and a weight decay of 1e-5. Answers are generated using beam search with a
beam size of 3, and evaluation metrics include CIDEr, BLEU, METEOR, and
ROUGE_L [16].

3.3 Comparison with the State-of-the-Arts

Based on pre-extracted anatomical and disease visual features, we construct
our baseline using MCCFormer without the anatomical knowledge graph and
without pre-training, directly generating answers using Language Modeling. The
results are shown in Table 1. Our best results exceed the baseline with 10.7%
in BLEU1, 17.4% in ROUGE_L, and 11.6% in METEOR, also surpassing the
previous top method EKAID [6] in all metrics.

Table 2. Ablation experiments in MIMIC-Diff-VQA.

Method BLEU1 BLEU2 BLEU3 BLEU4 ROUGE_LCIDEr METEOR

Baseline w/o pretrain
Anatomical feat. 0.440 0.369 0.310 0.268 0.355 0.182 0.246
Disease feat. 0.459 0.385 0.333 0.287 0.377 0.203 0.254
Anatomical + Disease feat. 0.523 0.453 0.400 0.350 0.488 0.572 0.287
+ Anatomical KG 0.544 0.468 0.411 0.363 0.568 1.633 0.289

Baseline w/ pretrain
Pretrained w/o Fine-Grained Loss 0.566 0.496 0.440 0.394 0.607 1.807 0.378
Pretrained w/ LM loss 0.592 0.518 0.460 0.411 0.660 2.010 0.392
Pretrained w/ MLM loss 0.630 0.543 0.479 0.422 0.662 2.022 0.403
Finetune w/ MLM loss 0.625 0.543 0.468 0.403 0.646 1.915 0.336
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Question: What clinical symptoms or changes are evident in the main image compared to the reference image? 
w/o KG: the main image is missing the finding of lung opacity than the reference image. 
w/ KG: the main image is missing the finding of atelectasis than the reference image. 

Main ReferenceKG KG

Question: What clinical symptoms or changes are evident in the main image compared to the reference image? 
w/o Fine-Grained pretrain: the main image is missing the finding of pneumothorax than the reference image.  
w/Fine-Grained pretrain: the main image has an additional finding of pneumothorax than the reference image.  

Fig. 2. Case study of our method on MIMIC-Diff-VQA: ✓ and × denote the
correctness of answers. Left and right panels show the input main and reference images,
anatomical detection results, and anatomical knowledge graph, respectively.

3.4 Ablation Analysis

To demonstrate the effectiveness of our overall method, we primarily discuss
the following questions: 1) The contribution of anatomical features, disease fea-
tures, and the anatomical knowledge graph to performance improvement. 2) The
necessity of pre-training and the impact of fine-grained contrastive learning on
performance. 3) Which text generation method contributes more to generat-
ing fluent answer. The results of ablation experiments are shown in Table 2.
It is evident that both anatomical and disease features benefit Diff-MedVQA,
with anatomical knowledge graph providing a 2.1% and 8% increase in BLEU1
and ROUGE_L respectively. Pre-training with modal alignment of keywords
substantially improves performance, especially fine-grained contrastive learning
which raises BLEU1 by 6.5%. Considering the minor share of keywords in an-
swer texts, pre-training the text encoder with Masked Language Modeling seems
more beneficial than Language Modeling. Figure 2 also visualizes the proposed
modules, demonstrating the performance improvement of Diff-MedVQA due to
the anatomical knowledge graph and fine-grained pre-training.

4 Conclusion

In this paper, we introduce a two-stage framework for Diff-MedVQA, which ac-
quires angle-robust visual features through an Anatomical Knowledge Graph and
utilizes a Multi-Change Capture transformer to identify visual differences. The
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approach involves Coarse-to-Fine Granularity Contrastive Learning for align-
ing differential representations with keyword text, leading to answer generation
via language modeling. Extensive experiments on the MIMIC-CXR-Diff dataset
demonstrate the effectiveness of our proposed method.
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