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Abstract. Improving the fairness of federated learning (FL) benefits
healthy and sustainable collaboration, especially for medical applica-
tions. However, existing fair FL methods ignore the specific character-
istics of medical FL applications, i.e., domain shift among the datasets
from different hospitals. In this work, we propose Fed-LWR to improve
performance fairness from the perspective of feature shift, a key issue in-
fluencing the performance of medical FL systems caused by domain shift.
Specifically, we dynamically perceive the bias of the global model across
all hospitals by estimating the layer-wise difference in feature representa-
tions between local and global models. To minimize global divergence, we
assign higher weights to hospitals with larger differences. The estimated
client weights help us to re-aggregate the local models per layer to obtain
a fairer global model. We evaluate our method on two widely used feder-
ated medical image segmentation benchmarks. The results demonstrate
that our method achieves better and fairer performance compared with
several state-of-the-art fair FL methods.

Keywords: Federated Learning · Fairness · Medical Image Analysis.

1 Introduction

Federated learning [15,21] (FL) has emerged as a hot research topic in health-
care [5], offering a framework for effectively leveraging diverse datasets to learn
a better global model without compromising privacy, significantly facilitating
communication and collaboration among medical institutions. However, most of
the existing works [9,3,10,27,19] primarily focus on improving the global per-
formance (e.g., average accuracy), incurring disproportionately advantages or
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Fig. 1: (a) Overview of Fed-LWR. During the parameter aggregation stage of
t-th round, Fed-LWR calculate layer-wise CKA similarity δk = {δ1k, δ2k . . . , δMk }
between the local model wt

k and anchor wt
G averaged by server on hospital k.

The CKA scores will be used to re-aggregate the local models to obtain fair
global model ŵt

G. (b) Variations in CKA similarity versus the layers of local
models from two pairs of clients, which are randomly selected. This reveals that
the differences between models vary with different layers.

disadvantages on some institutions. Fairness has always been an important eval-
uation criterion for machine learning models, especially for FL applications. An
unfair FL system can hurt the incentives of users to participate.

Existing fairness-related FL studies primarily focus on two aspects: collabo-
ration fairness [20,31] and performance fairness [16,14]. The former pays more
attention to resource allocation during the learning process, while the latter con-
cerns the balance of model outcomes. Considering that most real-world users are
consequentialists, they are more concerned about the intuitive performance of
the learned model on their private dataset, rather than the intricate details of the
learning process. Therefore, the main goal of this work is to improve the perfor-
mance fairness of medical FL system. Performance fairness is often an overlooked
concern when striving for higher global performance. For example, although the
average accuracy may be high, the accuracy at some institutions could be signif-
icantly lower. This skew in performance outcomes necessitates a more nuanced
approach to ensure equitable improvements across all participating entities in
FL applications. However, overemphasizing fairness in performance is also non-
sensical, as the goal of fair FL is not to achieve identical accuracy for every user.
The key challenge lies in striking a trade-off between ‘high’ and ‘fair’.

To address this, some studies [22,6,2] introduced additional objectives to
constrain the optimization process. Similarly, Ditto [14] not only introduced
additional objectives but also personalization in the loss function for different
clients to improve fairness. In contrast, another promising solution is to re-weight
clients by various metrics, such as empirical loss [16,13] or validation result [31],
yielding a flexible fairness/accuracy trade-off. In the medical area, FedCE [8] also
proposed a novel re-weighting strategy by estimating client contribution based
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on gradients and validation loss. Re-weighting is based on a straightforward
idea: assigning higher weights to hospitals with poorer performance, thereby
ensuring a more uniform accuracy of the global model [16]. Thus, the key is
how to dynamically estimate the differences between hospitals. Different from
previous re-weighting methods, we try to estimate client weights from a novel
perspective based on the characteristics of medical FL. First , the private data
from different medical institutions is typically collected from various devices,
leading to domain shifts across different datasets, resulting in variations in the
feature representations of different local models, namely feature shift [17,32,7].
Such variations are the primary factor of the disparate performance of the global
model across different datasets. Second , previous methods estimated an overall
weight for each client, which is a coarse way. As shown in Fig. 1 (b), the degree
of differences across local models vary with different layers. Therefore, directly
assigning a single weight would ignore these differences in layers and lead to
suboptimal aggregation.

In this work, we propose a novel Layer-Wise Re-weighting method from the
perspective of feature shift, namely Fed-LWR, to improve the performance fairness
of medical FL. The main idea of Fed-LWR is to quantify the differences in feature
representations among different local models. To achieve this, we employ an av-
eraged aggregated global model as the anchor and then estimate the layer-wise
centered kernel alignment (CKA) [1,12] similarity between the local models and
the anchor. The estimated similarity reflects the performance differences of the
global model across all hospitals. Therefore, we assign larger weights to hospitals
with larger feature differences, thereby minimizing the overall performance dis-
crepancies of the global model across different hospitals. The new client weights
are used to re-aggregate local models per layer, thereby obtaining a fairer global
model. We evaluated our method on two federated medical image segmentation
benchmarks. The results indicate that Fed-LWR achieves better fairness/accuracy
trade-off compared with several state-of-the-art fair FL methods.

2 Method

2.1 Preliminaries

Federated Learning. Assume that there are K hospitals participating in a
federated learning system, communicating through a trusted central server. Each
hospital k ∈ [K] has a private dataset Dk with nk training samples {Xi,Y i}nk

i=1

and trains a neural network f = hM ◦ · · · ◦ h2 ◦ h1 with M layers. FL typically
minimizes empirical risk Lk to optimize local models and updates the global
model through averaging aggregation after each round t:

L =
1

K

K∑
k=1

Lk(w
t
k), and wt

G =
1

K

K∑
k=1

wt
k, (1)

where wt
G and wt

k are the parameters of global and local models. However, in
medical FL applications, data from different hospitals are collected using diverse
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devices, resulting in differences in data distribution. Such disparities can impair
the fairness of the global model across different hospitals. To better understand
our objective, we introduce the definition of performance fairness from [16].

Definition 1. (Performance Fairness) For two trained models w and ŵ from
FL, the model ŵ provides a more fair solution if the performance of ŵ on the
K hospitals is more uniform than the performance of w on the K hospitals.

Centered Kernel Alignment. CKA [1,12] is a reliable technique for quan-
tifying the similarity between pairs of neural network representations, which is
widely used in various applications [11,25,23]. Let z1 and z2 be the features from
an arbitrary layer of two neural networks, U ∈ Rn×z1 and V ∈ Rn×z2 denote
their feature matrices on the same dataset with n samples, K = UU⊤ ∈ Rn×n

and L = V V ⊤ ∈ Rn×n are the Gram matrices of U and V . Based on Hilbert-
Schmidt Independence Criterion (HISC) [4], the calculation process of CKA
similarity score δ ∈ [0, 1] between U and V can be expressed as follows:

δ =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, HSIC(K,L) =

vec
(
K ′) · vec (L′)
(n− 1)2

, (2)

where K ′ and L′ are centered K and L, vec(·) is vectorization operation. For
convenience, we use CKA(·) to represent the above process.

2.2 Fed-LWR: Layer-wise Re-weighting for Federated Learning

In this section, we propose a novel layer-wise re-weighting method, Fed-LWR, by
estimating the differences among clients from the perspective of feature shift.
The overview of Fed-LWR is presented in Fig. 1 (a). Compared to standard FL
framework [21], it incorporates additional representation difference estimation
on the hospital and layer-wise re-aggregation process on the server after local
training. The detailed algorithm is presented in Alg. 1.
Representation Difference Estimation. After the local training stage of t-th
round, we first obtain a global model through Eq. (1) and send it to each hospital,
which serves as an anchor. Then, we compute the CKA similarity between each
layer of the local model and the anchor for every client. The above process at
client k can be written as:

δk = [δ1k, . . . , δ
m
k , . . . , δMk ], and δmk = CKA(Um

k ,V m
k ), (3)

where Um
k and V m

k are the feature matrices from the m-th layer of local model
and anchor on dataset Dk.

Um
k = hm ◦ · · · ◦ h2 ◦ h1([X1,X2, . . . ,Xnk ],w

t
k,m ∪ · · · ∪wt

k,2 ∪wt
k,1),

V m
k = hm ◦ · · · ◦ h2 ◦ h1([X1,X2, . . . ,Xnk ],w

t
G,m ∪ · · · ∪wt

G,2 ∪wt
G,1),

(4)

where wt
k,m and wt

G,m are the m-th layer parameters of local model and anchor.
CKA can determine correspondences between hidden layers of neural networks
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Algorithm 1: Fed-LWR
Input: K hospitals, communication rounds T , learning rate η,
Output: ŵT

G

1 Initialize w0
G // ŵ0

G = w0
G

2 for round t = 1, 2, ..., T do
3 for hospital k = 1, 2, ...,K parallelly do
4 wt

k ← ŵt−1
G

5 wt
k ← wt

k − η∇Lk // Local training
6 end
7 wt

G ← 1
K

∑K
k=1 wt

k // Averaging aggregation for the anchor
8 for hospital k = 1, 2, ...,K parallelly do
9 δk ← [δ1k, . . . , δ

m
k , . . . , δMk ], δmk ← CKA(Um

k ,V m
k ) // Eq. (3)

10 end
11 ρk ← [ρ1k, . . . , ρ

m
k , . . . , ρMk ], ρmk ←

1−δmk∑K
i=1(1−δmi )

// Eq. (6)

12 ŵt
G ← {ŵt

G,m}Mm=1, ŵt
G,m ←

∑K
k=1 ρ

m
k wt

k,m // Eq. (3)
13 end
14 return ŵT

G

trained under different conditions compared to traditional similarity metrics [12].
This best aligns with the situation of FL, as local models are trained on diverse
datasets with different distributions.
Layer-wise Re-aggregation. The server collects the CKA similarity scores
from each hospital, which reflect the local-global feature differences. Lower scores
mean a greater difference, indicating that the global model is further from the
local optimum, resulting in poorer performance at that hospital. Based on this,
we convert the CKA similarity scores into aggregation weights:

ρk = [ρ1k, . . . , ρ
m
k , . . . , ρMk ], and ρmk =

1− δmk∑K
i=1(1− δmi )

. (5)

Eq. (5) assigns higher weights to hospitals with greater feature differences, and
the sum of the total weight for each layer is 1. Finally, we use the new weights
for layer-wise re-aggregation to get the fair global model:

ŵt
G = ŵt

G,M ∪ · · · ∪ ŵt
G,m ∪ · · · ∪ ŵt

G,1, and ŵt
G,m =

K∑
k=1

ρmk wt
k,m. (6)

The fair global model ŵt
G will serve as the initial weights for the next round of

local training.

3 Experiment

3.1 Experimental Setup

Datasets. To evaluate the effectiveness of our method, we conducted exper-
iments on two medical image segmentation datasets: ProstateMRI [18] and
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RIF [29], which are widely used in medical FL [8,10,27,28,32]. ProstateMRI
collects T2-weighted MRI images from six different data sources for prostate
segmentation. The size of all images has been processed to 384 × 384. We treat
each data source as a client and divide the data into training, validation, and
testing sets with a ratio of 6:2:2 [32]. RIF contains the retinal fundus images from
four different clinical institutions for optic disc and cup segmentation. Following
[27,28], we resize all images to 384 × 384. Since each sub-dataset has already
been pre-divided into training and testing sets [29], we further split the training
set into training and validation sets at a ratio of 4:1.
Baselines. We compared our method with following baselines: ❶ Solo: clients
train models locally without communication; ❷ FedAvg [21]: the most popular
FL method which updates the global model through parameter averaging; and
several state-of-the-art fair FL methods including ❸ q-FedAvg [16]: a method
re-weights the clients through empirical loss; ❹ CFFL [20]: it re-allocates the
received model from the server by estimating the contribution of clients from
validation results; ❺ CGSV [31]: it proposed a cosine gradient Shapley value
to estimate the contribution of clients from the gradient; ❻ Ditto [14]: a per-
sonalized fair FL method to set different optimization objectives for clients; ❼
FedCE [8]: a fair federated medical image segmentation method by estimating
the weights of clients simultaneously from gradients and validation loss. There
are two different versions, i.e., FedCE (Sum.) and FedCE (Multi.), that use
addition and multiplication to merge contributions from gradients and losses,
respectively. We use the Dice coefficient, a popular metric in medical image seg-
mentation tasks, to evaluate the performance of the method. Following [16,14],
we evaluate the performance fairness of methods by the standard deviation of
testing performance across all clients.
Implementation Details. We implement all methods using PyTorch and con-
duct all experiments using an NVIDIA RTX 4090 GPU with 24GB of mem-
ory. Besides, we use U-Net [26] for the segmentation task and Dice loss as the
optimization objective for the clients. The network is optimized by the Adam
optimizer with a learning rate of 1e-3 and weight decay of 1e-4. The batch size
is set to 8. We run 200 communication rounds with 1 local epoch and ensure
all methods have converged stably. For a fair comparison, all methods adopt the
same experimental settings.

3.2 Comparison with State-of-the-Arts

In Tables 1 and 2, we present the results of quantitative comparison for all meth-
ods on ProstateMRI and RIF, including the Dice scores on the testing sets of
each client, as well as their average results and standard deviation. Apparently,
with the proposed layer-wise re-weighting strategy, Fed-LWR significantly im-
proves the performance of FedAvg from 88.78% to 93.25% on ProstateMRI and
from 84.63% to 87.17% on RIF. Meanwhile, it also outperforms other fair FL
methods on both two datasets. The above results indicate that our method can
effectively alleviate the feature shift problem. Notably, FedAvg achieved lower
performance on RIF compared to Solo, which is due to the high heterogeneity
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Table 1: Quantitative comparison with Dice coefficient (%) on the testing
set of ProstateMRI [18]. We report the performance of six clients, as well as
their average result (Avg.) and standard deviation (Std.). The best results are
marked in bold.
Method Site1 Site2 Site3 Site4 Site5 Site6 Avg. Std.

Solo 84.41 85.02 93.70 91.06 89.33 85.43 88.16 3.46
FedAvg [21] 85.84 92.27 93.58 87.89 92.47 80.66 88.78 4.54
q-FedAvg [16] 85.84 94.93 90.22 88.53 90.43 83.32 88.88 3.67
CFFL [20] 82.84 94.49 89.83 86.89 90.83 82.59 87.91 4.29
CGSV [31] 82.36 91.02 90.14 87.25 91.06 82.71 87.42 3.68
Ditto [14] 88.15 93.49 92.72 89.99 92.62 83.64 90.10 3.42
FedCE (Sum.) [8] 88.13 94.02 91.14 90.63 92.27 87.93 90.69 2.15
FedCE (Multi.) [8] 89.85 93.49 92.21 90.67 93.66 89.53 91.57 1.65
Fed-LWR 91.92 94.73 93.22 93.34 94.06 92.21 93.25 0.97

Table 2: Quantitative comparison with Dice coefficient (%) on the testing set
of RIF [29]. We report the performance of four clients, as well as their average
result (Avg.) and standard deviation (Std.). The best results are marked in
bold.

Method Site1 Site2 Site3 Site4 Avg. Std.

Solo 82.01 74.57 91.26 92.56 85.10 7.31
FedAvg [21] 82.70 72.68 91.19 91.93 84.63 7.79
q-FedAvg [16] 77.83 80.48 91.72 91.62 85.41 6.32
CFFL [20] 81.49 74.97 91.33 89.53 84.33 6.55
CGSV [31] 78.79 77.30 89.77 91.78 84.41 6.42
Ditto [14] 82.11 78.91 90.90 91.95 85.97 5.58
FedCE (Sum.) [8] 87.02 76.60 90.92 90.28 86.21 5.73
FedCE (Multi.) [8] 86.00 77.42 90.69 89.93 86.01 5.26
Fed-LWR 85.89 79.43 92.42 90.96 87.17 5.08

of client data. In terms of performance fairness, all fair FL methods show better
fairness compared with FedAvg. However, the fairness of some methods (e.g.,
CFFL and CGSV) is achieved by sacrificing global performance, indicating that
their fairness mechanisms may hinder the convergence of the global model to
some extent. Compared to other methods, Fed-LWR achieved the best perfor-
mance fairness on two datasets. This is attributed to Fed-LWR improving the
performance of worse clients, e.g., it improves the performance of Site1 from
82.70% to 85.89% and Site2 from 72.68% to 79.43% on RIF. The above results
demonstrate the effectiveness of Fed-LWR in improving the fairness performance
of the FL system.
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Table 3: Results of ablation study on the testing set of ProstateMRI [18].
Method Site1 Site2 Site3 Site4 Site5 Site6 Avg. Std.

FedAvg [21] 85.84 92.27 93.58 87.89 92.47 80.66 88.78 4.54
Fed-LWR-v1 85.76 94.29 94.36 88.51 92.91 86.33 90.36 3.62
Fed-LWR-v2 89.27 94.86 92.99 90.50 93.24 89.32 91.70 2.12
Fed-LWR 91.92 94.73 93.22 93.34 94.06 92.21 93.25 0.97

(a) (b)

Fig. 2: (a) Avg. and (b) Std. versus the number of communication rounds on
the testing set of ProstateMRI [18].

3.3 Analytical Studies

Ablation Study. To provide more insights into Fed-LWR, we further delve
into the design of our approach, i.e., measurement of feature difference and
layer-wise aggregation. First, we build up two variants of our method as fol-
lows: ❶ Fed-LWR-v1: we utilize cosine similarity, widely used in various ap-
plications [24,30], instead of CKA similarity to measure feature difference for
Fed-LWR; ❷ Fed-LWR-v2: we only use the CKA similarity of the last layer of
the U-Net encoder to estimate the weights of clients and aggregate the entire
model. As shown in Table 3, the performance significance of cosine similarity is
significantly lower than that of CKA similarity because cosine similarity is more
suitable as an optimization objective to minimize the feature distance, and is
difficult to estimate the similarity of two unrelated features. Besides, the com-
parison results between Fed-LWR and Fed-LWR-v2 demonstrate the importance
of layer-wise aggregation.
Convergence. We visualize the curve of testing performance versus communi-
cation rounds for FedAvg, FedCE, and our method. As shown in Fig. 2 (a), we
can observe that Fed-LWR converges faster (stable after 90 rounds) compared to
the other two methods. Interestingly, from Fig. 2 (b), Fed-LWR exhibits a larger
standard deviation between rounds 20 to 50, as it is converging rapidly. This
indicates that the fairness mechanism of Fed-LWR does not slow its convergence.
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4 Conclusion

In this work, we improved the performance fairness of medical FL from the
perspective of feature shift. Specifically, we proposed a novel fair FL framework,
Fed-LWR, by estimating the feature differences between local models and the
global model for layer-wise re-aggregation.
Future Work. We primarily focused our evaluation on segmentation tasks, as it
is the most representative task in medical image analysis. Nevertheless, Fed-LWR
is a versatile framework, and we will further evaluate its effectiveness on more
medical image tasks (e.g., classification or reconstruction) in future work.
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