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Abstract. Semi-supervised learning has emerged as a critical approach
for addressing medical image segmentation with limited annotation, and
pseudo labeling-based methods made significant progress for this task.
However, the varying quality of pseudo labels poses a challenge to model
generalization. In this paper, we propose a Voxel-wise CLIP-enhanced
model for semi-supervised medical image Segmentation (VCLIPSeg).
Our model incorporates three modules: Voxel-Wise Prompts Module
(VWPM), Vision-Text Consistency Module (VTCM), and Dynamic La-
beling Branch (DLB). The VWPM integrates CLIP embeddings in a
voxel-wise manner, learning the semantic relationships among pixels.
The VTCM constrains the image prototype features, reducing the impact
of noisy data. The DLB adaptively generates pseudo-labels, effectively
leveraging the unlabeled data. Experimental results on the Left Atrial
(LA) dataset and Pancreas-CT dataset demonstrate the superiority of
our method over state-of-the-art approaches in terms of the Dice score.
For instance, it achieves a Dice score of 88.51% using only 5% labeled
data from the LA dataset.
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1 Introduction

Medical image segmentation plays an essential role in disease diagnosis, treat-
ment planning, and disease detection [17, 25]. The development of an accurate
and robust segmentation model necessitates a significant amount of annotated
data. However, the annotation for medical images is time-consuming and de-
mands expert knowledge, especially for 3D volumes [22, 7, 11]. Consequently,
training effective medical image segmentation models with limited annotations
has become an important problem.

In recent years, semi-supervised learning (SSL) has emerged as a critical ap-
proach to tackle this challenge [1, 18, 9]. SSL aims to utilize both labeled and
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unlabeled data for model training, alleviating the burden of annotation. More-
over, methods based on pseudo labeling [20, 19, 4] have made significant progress
in this task. However, the varying quality of pseudo labels can greatly affect the
generalization of deep learning models.

On the other aspects, Radford et al. [15] proposed the Contrastive Language-
Image Pretraining (CLIP), which has achieved remarkable success. CLIP can
map text and images into a shared semantic space, facilitating cross-modal un-
derstanding. Trained with a large amount of text and images from the Internet,
CLIP has made generalized applications across diverse domains feasible [6, 5, 12].
Despite its proven potential in computer vision, CLIP’s adoption in medical im-
age analysis, particularly in medical image segmentation, remains relatively rare.
The CLIP-Driven Universal model [10] represents a pioneering effort to integrate
CLIP into voxel-level semantic understanding tasks in the medical domain. By
capturing anatomical relationships, this framework empowers models to tackle
partially labeled problems. However, it combines CLIP embeddings with image
features in a global manner, disregarding spatial relationships among pixels, and
relies on a wide range of organ datasets, limiting its ability to handle semi-
supervised medical segmentation tasks. Thus, it raises a challenge: How can
we effectively utilize CLIP for 3D single-organ SSL tasks?

In this paper, we propose a voxel-wise CLIP-enhanced model for semi-supervised
medical image segmentation (VCLIPSeg), aiming to explore how to enhance
semi-supervised image segmentation through CLIP. Our method designs a Voxel-
Wise Prompts Module (VWPM) and a Vision-Text Consistency Module (VTCM).
The VWPM integrates CLIP embeddings into image features at the voxel level,
learning the semantic relationships among different pixels. The VWPM enhances
image features, making the prediction results of the semi-supervised model more
accurate. The VTCM calculates the similarity between the image prototype fea-
tures and CLIP embeddings to constrain different categories of image features,
reducing the impact of noisy data. Moreover, due to the noisy and inaccurate
predictions for unlabeled training images, employing hard labels [2] or sharp-
ened pseudo-labels [20] boosts the model’s confidence in these incorrect predic-
tions, potentially leading to overfitting the noise. We develop a dynamic labeling
branch that adaptively generates pseudo-labels in real time, thereby enhancing
the leverage of unlabeled data. We evaluate the proposed VCLIPSeg in two
public datasets: the Left Atrial Segmentation Challenge (LA) and Pancreas-CT
datasets. Extensive experiments show our approach achieves competitive results.
Specifically, with 5% labeled data on the LA dataset, our approach achieves an
88.51% Dice score, 0.71% higher than the SOTA.

2 Methodology

2.1 Problem Setting

In the semi-supervised segmentation setting, the whole dataset consists of N
labeled data and M unlabeled data, where N ≪ M . Let DL = {(xl

i, y
l
i)}Ni=1 and

DU = {(xu
i )}Mj=1 denote the labeled set and unlabeled set, respectively. The xl

i
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Fig. 1. Overview of our proposed VCLIPSeg. The VCLIPSeg comprises a vision en-
coder, a text encoder, and two vision decoders. The VWPM and the VTCM use CLIP
embeddings to enhance model features. The DLB utilizes unlabeled data by adaptively
generating pseudo labels in real-time.

and xu
i correspond to the medical volumes, while the yli represents the manual

annotated Ground Truth (GT). The primary objective is to jointly utilize DL

and DU to learn a segmentation model that can achieve higher segmentation
accuracy. We propose a SSL framework named VCLIPSeg, shown in Fig. 1.

2.2 Encoding Branches

As illustrated in Fig. 1, the Encoding Branches consist of a text branch and a
vision branch.
Text Branch: In this branch, we utilize the pre-trained language model CLIP as
the Text Encoder while keeping its parameters frozen. It is used solely for extract-
ing text embeddings once before training. To better learn pixel-level semantic
relationships, we employ the medical prompt “A pixel of [CLS]" where “[CLS]"
corresponds to the class names in the segmentation results. Let t ∈ RC×512 de-
note the text embeddings, where C represents the number of categories in the
task. Combining the knowledge of visual and language modalities improves the
performance and generalization ability of the model.
Vision Branch: In this branch, we adopt the V-Net encoder [14] as the Vision
Encoder. Let f ∈ RD×W×H denote the Vision Embeddings extracted from the
encoder, where D, H, W corresponding to the depth, width, and height of the
embeddings, respectively.

2.3 Voxel-Wise Prompts Module (VWPM)

Due to the large distribution difference between text features and image features,
we design VWPM to generate text-vision prompts based on both image and text.
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This module aims to explore the semantic relationships between different pixels
in medical volume data for obtaining more meaningful segmentation results.

As shown in the top-right in Fig. 1, we first repeat the CLIP embeddings t
to match the size of the vision embedding to obtain text-vision map tv. For the
vision embedding f , we input it into the vision-semantic controller, comprising
two multi-layer perceptrons (MLPs). This controller aims to learn the vision
semantic map (vs) for the pixels in the volume data.

vs = softmax (controller(f)) , (1)

Subsequently, we obtain the voxel-level text-vision prompt by multiplying
and summing the text-vision map and the vision-semantic map.

prompt = tbgv × tbgs + tlav × tlas . (2)

Finally, we concatenate f and prompt as the decoder input.

fp = conv (cat(f, prompt)) , (3)

where cat is a concatenation operation and conv denotes a convolution operation.

2.4 Vision-Text Consistency Module (VTCM)

Considering the large amount of unlabeled data in the training dataset, prompt
learned through VWPM may introduce noise, potentially hindering the feature
discrimination based on CLIP embeddings t. We further propose the VTCM to
regularize fp to ensure the feature separation between different categories.

After the VWPM, we further add a project header proj that maps fp into
l2-normalized 512-d feature vectors. Subsequently, we use the prototype of each
class to perform the regularization of image features. In this step, we only con-
sider regions with the highest confidence to compute the prototypes. Specifically,
we assign a mask value of 1 to regions where both Decoder A and Decoder B
in our model accurately predict the outcome. Then, we compute the prototype
features by averaging the selected features across categories based on the mask.

fproto = AVG-POOL(proj(fp),mask). (4)

Following, we compute the cosine similarity between prototype features and
text embeddings to impose constraints on the features by maximizing their sim-
ilarity. This regularization loss is defined as:

Lreg = 1− cos(fproto, t), (5)

where cos computes the cosine similarity. Note that the VTCM is exclusively
applied during the training phase, which does not impose extra computational
overhead during deployment.
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2.5 Dynamic Labeling Branches (DLB)

Since predictions for unlabeled training datasets can be noisy and inaccurate,
employing hard [2] or sharpened pseudo-labels [20] might boost confidence in
incorrect predictions, ultimately raising the risk of overfitting to the noise. To
tackle this issue, we design a dynamic labeling branch, based on the simple
assumption that the decoder with a lower loss performs better. This module dy-
namically generates pseudo labels based on the loss value, enabling the effective
utilization of unlabeled data. For the labeled data, we simply use the dice loss.

Ll = Ldice(predA,GT ) + Ldice(predB,GT ), (6)

where Ldice denotes the dice loss function. For unlabeled data, we calculate
weights based on the loss of different decoders and dynamically synthesize pseudo-
labels in real time,

w1 =
e1−σ(Ldice(predA,GT ))

e1−σ(Ldice(predA,GT )) + e1−σ(Ldice(predB,GT ))
, (7)

w2 =
e1−σ(Ldice(predB,GT ))

e1−σ(Ldice(predA,GT )) + e1−σ(Ldice(predB,GT ))
, (8)

P = w1 ∗ predA+ w2 ∗ predB, (9)

where σ denotes the sigmoid function, and P is the weighted pseudo labels.
Next, the generated pseudo-labels P are utilized to provide supervision dur-

ing the training of unlabeled data. The unlabeled data is trained by both the
dice loss and cross-entropy loss, which are represented in the following equations:

Lu = Ldice(predA, P )+Lce(predA, P )+Ldice(predB, P )+Lce(predB, P ), (10)

where Lce denotes the cross-entropy loss function. Finally, we combine the seg-
mentation loss and the regularization loss to train our framework as the following:

L = Ll + λuLu + λr Lreg (11)

3 Experiments

3.1 Experimental Setup

Dataset. In this study, we conduct experiments on two public datasets: the
Left Atrium Segmentation Challenge (LA) [21] dataset and the Pancreas-CT [3]
dataset. For LA dataset, the volumes maintain a consistent isotropic resolution
at 0.6253 mm3. The dataset is split into 80 volumes for training and 20 volumes
for testing. For Pancreas-CT dataset, the image intensity is windowed by [-125,
275]. Following [19], 62 volumes are allocated for training and 20 for testing.
Implementation details. To ensure a fair comparison, we conduct all evalu-
ations using Pytorch 2.0.1 and CUDA 11.8 on an NVIDIA GeForce RTX 3090
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Table 1. Comparison with other methods on the LA dataset.

Volumes used MetricsMethod Labeled Unlabeled Dice(%)↑ Jaccard (%)↑ 95 HD (%)↓ ASD (voxel)↓
V-Net [14] 4 (5%) 0 50.13 39.32 32.04 10.27
V-Net [14] 8 (10%) 0 83.33 72.86 19.03 5.71
V-Net [14] 16 (20%) 0 89.40 81.01 7.22 2.05
V-Net [14] 80 (100%) 0 92.27 85.69 4.33 1.45
MT (NeurIPS’17) [16] 80.83 68.54 18.34 5.62
UA-MT (MICCAI’19) [24] 79.49 66.59 24.04 6.89
MC-Net (MICCAI’21) [20] 82.48 70.79 18.71 4.49
MC-Net+ (MIA’22) [19] 83.31 72.24 14.61 3.46
CAML (MICCAI’23) [4] 87.42 77.74 9.57 2.23
†ARCO (NeurIPS’23) [23] 87.80 - - -
VCLIPSeg (Ours)

4 (5%) 76 (95%)

88.51 79.49 10.48 2.28
MT (NeurIPS’17) [16] 87.45 77.88 18.60 4.96
UA-MT (MICCAI’19) [24] 85.71 75.45 15.14 3.92
MC-Net (MICCAI’21) [20] 87.37 77.80 10.07 1.91
MC-Net+ (MIA’22) [19] 88.63 79.72 9.01 1.78
CAML (MICCAI’23) [4] 89.33 80.81 8.05 2.11
†ARCO (NeurIPS’23) [23] 89.90 - - -
VCLIPSeg (Ours)

8 (10%) 72 (90%)

90.59 82.87 6.22 1.61
MT (NeurIPS’17) [16] 90.23 82.29 6.62 2.05
UA-MT (MICCAI’19) [24] 90.19 82.26 7.64 2.14
MC-Net (MICCAI’21) [20] 91.10 83.73 5.94 1.57
MC-Net+ (MIA’22) [19] 90.91 83.40 6.58 1.57
CAML (MICCAI’23) [4] 90.70 83.06 7.90 1.94
VCLIPSeg (Ours)

16 (20%) 64 (80%)

91.15 83.82 5.86 1.49

† represents data from referenced paper.

GPU. We randomly extract 3D patches of size 112×112×80 from the LA dataset
and 96× 96× 96 from the Pancreas-CT dataset following [19]. We use the SGD
optimizer with a learning rate of 10−2 and train for 15,000 iterations. Each train-
ing batch comprised four patches, two of which are unlabeled. To balance the
loss items, we introduce a time-dependent Gaussian warming-up function [8] for
λu, defined as λu(t) = e−5(1−t/tmax)

2

. Additionally, we set λr to 0.5. To evalu-
ate the performance, four evaluation metrics are utilized: The Dice coefficient,
the Jaccard coefficient, the 95% Hausdorff Distance (95 HD), and the average
surface distance (ASD).

3.2 Comparsion with Sate-of-the-Art Methods

We conduct experiments on the LA and Pancreas-CT datasets to evaluate our
method, comparing it with several state-of-the-art methods [16, 24, 20, 19, 4, 23]5.
We first compare with different methods at three annotation levels and the re-
sults are presented in Fig. 1. In summary, our method demonstrates the best
overall performance at all annotation levels. Especially, with just 5% labeled
data, our approach surpasses ARCO by 0.71% in terms of the Dice score. With
only 10% labeled data, we achieve a Dice score of 90.59%. When the amount of

5 The code of ARCO [23] is not open-source, we only report the results in their paper.
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Table 2. Comparison with other methods on the Pancreas-CT dataset.

Method Volumes used Metrics
Labeled Unlabeled Dice (%)↑ Jaccard (%)↑ 95 HD (%)↓ ASD (voxel)↓

V-Net [14] 12 (20%) 0 75.07 61.96 10.79 3.31
V-Net [14] 62 (100%) 0 83.48 71.98 4.38 1.25
MT (NeurIPS’17) [16]

12 (20%) 50 (80%)

77.33 64.20 9.70 3.12
UA-MT (MICCAI’19) [24] 77.36 64.25 8.40 2.89
MC-Net (MICCAI’21) [20] 79.22 66.54 7.46 1.57
MC-Net+ (MIA’22) [19] 78.19 65.30 8.59 2.80
CAML (MICCAI’23) [4] 78.28 65.88 7.97 1.16
CauSSL (ICCV’23) [13] 77.02 63.85 7.69 1.62
VCLIPSeg (Ours) 80.56 68.13 6.75 1.49

annotated data increases to 20%, the performance of our model is only slightly
lower than the V-Net trained with 100% labeled data, reaching 91.15% compared
to the upper bound of 92.27%. Furthermore, we conduct additional experiments
on the more challenging Pancreas-CT dataset. As ARCO [23] is not open-source,
we include a new approach called CauSSL [13] for comparison, which incorpo-
rates a causal diagram into the SSL model. Table 2 presents the comparative
results of all methods using 20% labeled data. These results indicate that our
method effectively enhances semi-supervised medical image segmentation by in-
corporating CLIP information.
Qualitative Analysis. We further conduct a qualitative comparison among
these methods. Examples from the LA dataset with only 5% labeled data are
presented in Fig. 2. The 1st row displays a 3D view, while the 2nd row shows the
results of a 2D slice. To ensure a fair comparison, no post-processing methods
are applied to any of the methods. In the 1st row, our approach, which integrates
semantic information from CLIP, produces smoother prediction results. The 2nd
row shows a slice where fully supervised methods only predict a small portion.
Other semi-supervised techniques, with the assistance of unlabeled data, notably
improve their predictions but still exhibit discernible omissions, particularly in

Fig. 2. Qualitative analysis of the proposed method on the LA dataset.
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the lower right corner. In contrast, our approach learns the semantic relationships
among pixels, resulting in significant improvements.

3.3 Ablation studies

VWPM and VTCM: In this section, we analyze the effectiveness of the pro-
posed VWPM and VTCM, by employing the MC-Net [20] with DLB as the
baseline. We evaluate the performance at three annotation levels from the LA
dataset and report the dice scores in Table 3. When utilizing 5% labeled data,
VWPM and VTCM individually increase the Dice scores to 87.33% and 87.41%,
respectively. Furthermore, the combined use of VWPM and VTCM leads to a
further increase in dice scores, reaching 88.51%. Similar enhancements are ob-
served when using 10% and 20 % labeled data.

Table 3. Ablation study of our proposed VWPM and VTCM on the LA dataset.

VWPM VTCM 5% 10% 20%
- - 86.93 89.39 90.99
✓ - 87.33 89.76 90.84
- ✓ 87.41 89.55 91.01
✓ ✓ 88.51 90.59 91.15

DLB: To validate the effectiveness of the DLB, we add the DLB into the MC-
Net [20] and CPS [2] for evaluation and the results are reported in Table 4. As
shown in Table 4, both MC-Net and CPS effectively leverage unlabeled data,
increasing Dice scores from 50.13% to 82.48% and 84.67%, respectively. When
introducing our DLB, MC-Net’s Dice score improved by 4.45%. Similarly, CPS
increased from 84.67% to 85.52%. This indicates that DLB is more effective in
generating pseudo-labels.

Table 4. Ablation study of our proposed DLB on the LA dataset.

Method Dice (%)↑ Jaccard (%)↑ 95 HD (%)↓ ASD (voxel)↓
V-Net 50.13 39.32 32.04 10.27
MC-Net 82.48 70.79 18.71 4.49
+DLB 86.93 (↑ 4.45) 77.10 (↑ 6.31) 9.22 (↓ 9.49) 2.19 (↓ 2.30)
CPS 84.67 73.77 16.60 5.04
+DLB 85.52 (↑ 0.85) 75.11 (↑ 1.34) 12.14 (↓ 4.46) 2.67 (↓ 2.37)

4 Conclusion

In this paper, we introduce a voxel-wise CLIP-Enhanced model for semi-supervised
medical image segmentation. To improve the SSL model, we develop VWPM,
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which integrates CLIP embeddings at the voxel level. VTCM is used to constrain
image features, thereby reducing the influence of noisy labels. Additionally, we
propose a dynamic labeling branch to better utilize unlabeled data. Through
extensive experimentation, we show the effectiveness of our approach in trans-
ferring the capabilities of CLIP and outperforming the state-of-the-art (SOTA)
methods at different annotation levels.
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